Molecular Basis of the Vulnerability of Photosystem II to Damage by Light

1995 ◽  
Vol 22 (2) ◽  
pp. 201 ◽  
Author(s):  
J Barber

Using isolated reaction centres and cores of photosystem I1 (PSII) it has been possible to elucidate the details of two separate pathways which lead to photoinhibition. The acceptor side pathway involves charge recombination resulting in the formation of the triplet state of the primary electron donor, P680. This triplet state is harmless in the absence of oxygen but in its presence gives rise to highly reactive singlet oxygen. We have shown that this singlet oxygen specifically attacks the chlorophyll of P680 itself. This process, plus other possibilities, gives rise to degradation of Dl protein involving a primary cleavage in the stromal loop joining putative transmembrane regions four and five, to yield 23 kDa N-terminal and 10 kDa C-terminal fragments. In contrast a donor side pathway is oxygen independent and is due to detrimental secondary oxidations brought about by P680+. Oxidation of accessory chlorophyll (C670) and β-carotene are observed and D1 protein is degraded by a primary cleavage in the lumenal loop between the putative transmembrane segments one and two to yield 24 kDa C-terminal and 9 kDa N-terminal fragments. In vivo studies indicate that the acceptor pathway is more common. The reason for the inherent vulnerability of PSII to photoinduced damage is discussed in terms of the special nature of P68O and the implications of the role of cytochrome b559 as a versatile protectant against donor and acceptor side photoinactivation is also considered. The likely dimeric organisation of PSII in vivo adds an additional factor to the general discussion of the molecular processes which underlie the vulnerability of PSII to photoinduced damage.

2008 ◽  
Vol 36 (5) ◽  
pp. 1037-1044 ◽  
Author(s):  
Stephen Barnes ◽  
Erin M. Shonsey ◽  
Shannon M. Eliuk ◽  
David Stella ◽  
Kerri Barrett ◽  
...  

MS, with or without pre-analysis peptide fractionation, can be used to decipher the residues on proteins where oxidative modifications caused by peroxynitrite, singlet oxygen or electrophilic lipids have occurred. Peroxynitrite nitrates tyrosine and tryptophan residues on the surface of actin. Singlet oxygen, formed by the interaction of UVA light with tryptophan, can oxidize neighbouring cysteine, histidine, methionine, tyrosine and tryptophan residues. Dose–response inactivation by 4HNE (4-hydroxynonenal) of hBAT (human bile acid CoA:amino acid N-acyltransferase) and CKBB (cytosolic brain isoform of creatine kinase) is associated with site-specific modifications. FT-ICR (Fourier-transform ion cyclotron resonance)–MS using nanoLC (nano-liquid chromatography)–ESI (electrospray ionization)–MS or direct-infusion ESI–MS with gas-phase fractionation identified 14 4HNE adducts on hBAT and 17 on CKBB respectively. At 4HNE concentrations in the physiological range, one member of the catalytic triad of hBAT (His362) was modified; for CKBB, although all four residues in the active site that were modifiable by 4HNE were ultimately modified, only one, Cys283, occurred at physiological concentrations of 4HNE. These results suggest that future in vivo studies should carefully assess the critical sites that are modified rather than using antibodies that do not distinguish between different modified sites.


Author(s):  
Mack Biyiklioglu

A new sulfonic zinc(II) phthalocyanine bearing sodium 3-mercaptopropanesulphonate (Pc) was synthesized and characterized, as to its photophysical and photochemical properties, in vitro and in vivo. Pc remain non-aggregated in [Formula: see text],[Formula: see text]-dimethylformamide and in water containing 0.1% Cremophor EL, with high singlet oxygen efficacy. In vitro studies showed that the IC[Formula: see text] value of Pc on HepG2 cells was 1.3 [Formula: see text]M. In addition, in vivo studies showed that Pc mainly accumulated in tumor sites and showed an obvious PDT effect, and ca.97% of tumor growth was inhibited. Therefore, the Pc could be applied as a very promising photosensitizer for PDT in future clinical applications.


2002 ◽  
Vol 357 (1426) ◽  
pp. 1431-1440 ◽  
Author(s):  
Alison Telfer

During photosynthesis carotenoids normally serve as antenna pigments, transferring singlet excitation energy to chlorophyll, and preventing singlet oxygen production from chlorophyll triplet states, by rapid spin exchange and decay of the carotenoid triplet to the ground state. The presence of two β–carotene molecules in the photosystem II reaction centre (RC) now seems well established, but they do not quench the triplet state of the primary electron–donor chlorophylls, which are known as P 680 . The β–carotenes cannot be close enough to P 680 for triplet quenching because that would also allow extremely fast electron transfer from β–carotene to P + 680 , preventing the oxidation of water. Their transfer of excitation energy to chlorophyll, though not very efficient, indicates close proximity to the chlorophylls ligated by histidine 118 towards the periphery of the two main RC polypeptides. The primary function of the β–carotenes is probably the quenching of singlet oxygen produced after charge recombination to the triplet state of P 680 . Only when electron donation from water is disturbed does β–carotene become oxidized. One β–carotene can mediate cyclic electron transfer via cytochrome b 559. The other is probably destroyed upon oxidation, which might trigger a breakdown of the polypeptide that binds the cofactors that carry out charge separation.


2009 ◽  
Vol 14 (1) ◽  
pp. 019801
Author(s):  
Seonkyung Lee ◽  
Danthu H. Vu ◽  
Michael F. Hinds ◽  
Steven J. Davis ◽  
Alvin Liang ◽  
...  

2002 ◽  
Vol 357 (1426) ◽  
pp. 1421-1430 ◽  
Author(s):  
Jan M. Anderson ◽  
W. S. Chow

Given the unique problem of the extremely high potential of the oxidant P + 680 that is required to oxidize water to oxygen, the photoinactivation of photosystem II in vivo is inevitable, despite many photoprotective strategies. There is, however, a robustness of photosystem II, which depends partly on the highly dynamic compositional and structural heterogeneity of the cycle between functional and non–functional photosystem II complexes in response to light level. This coordinated regulation involves photon usage (energy utilization in photochemistry) and excess energy dissipation as heat, photoprotection by many molecular strategies, photoinactivation followed by photon damage and ultimately the D1 protein dynamics involved in the photosystem II repair cycle. Compelling, though indirect evidence suggests that the radical pair P + 680 Pheo – in functional PSII should be protected from oxygen. By analogy to the tentative oxygen channel of cytochrome c oxidase, oxygen may be liberated from the two water molecules bound to the catalytic site of the Mn cluster, via a specific pathway to the membrane surface. The function of the proposed oxygen pathway is to prevent O 2 from having direct access to P + 680 Pheo – and prevent the generation of singlet oxygen via the triplet–P 680 state in functional photosytem IIs. Only when the, as yet unidentified, potential trigger with a fateful first oxidative step destroys oxygen evolution, will the ensuing cascade of structural perturbations of photosystem II destroy the proposed oxygen, water and proton pathways. Then oxygen has direct access to P + 680 Pheo – , singlet oxygen will be produced and may successively oxidize specific amino acids of the phosphorylated D1 protein of photosystem II dimers that are confined to appressed granal domains, thereby targeting D1 protein for eventual degradation and replacement in non–appressed thylakoid domains.


2006 ◽  
Author(s):  
Seonkyung Lee ◽  
Danthu H. Vu ◽  
Michael F. Hinds ◽  
Steven J. Davis ◽  
Tayyaba Hasan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document