Saddle point approximation approaches for two-stage robust optimization problems

2019 ◽  
Vol 78 (4) ◽  
pp. 651-670
Author(s):  
Ning Zhang ◽  
Chang Fang

2020 ◽  
Vol 77 (2) ◽  
pp. 539-569
Author(s):  
Nicolas Kämmerling ◽  
Jannis Kurtz

Abstract In this work we study binary two-stage robust optimization problems with objective uncertainty. We present an algorithm to calculate efficiently lower bounds for the binary two-stage robust problem by solving alternately the underlying deterministic problem and an adversarial problem. For the deterministic problem any oracle can be used which returns an optimal solution for every possible scenario. We show that the latter lower bound can be implemented in a branch and bound procedure, where the branching is performed only over the first-stage decision variables. All results even hold for non-linear objective functions which are concave in the uncertain parameters. As an alternative solution method we apply a column-and-constraint generation algorithm to the binary two-stage robust problem with objective uncertainty. We test both algorithms on benchmark instances of the uncapacitated single-allocation hub-location problem and of the capital budgeting problem. Our results show that the branch and bound procedure outperforms the column-and-constraint generation algorithm.



Author(s):  
Amir Ardestani-Jaafari ◽  
Erick Delage

In this article, we discuss an alternative method for deriving conservative approximation models for two-stage robust optimization problems. The method mainly relies on a linearization scheme employed in bilinear programming; therefore, we will say that it gives rise to the linearized robust counterpart models. We identify a close relation between this linearized robust counterpart model and the popular affinely adjustable robust counterpart model. We also describe methods of modifying both types of models to make these approximations less conservative. These methods are heavily inspired by the use of valid linear and conic inequalities in the linearization process for bilinear models. We finally demonstrate how to employ this new scheme in location-transportation and multi-item newsvendor problems to improve the numerical efficiency and performance guarantees of robust optimization.





2015 ◽  
Vol 92 (10) ◽  
Author(s):  
Hugo A. Morales-Técotl ◽  
Daniel H. Orozco-Borunda ◽  
Saeed Rastgoo




2019 ◽  
Vol 12 (2) ◽  
pp. 193-224 ◽  
Author(s):  
Anirudh Subramanyam ◽  
Chrysanthos E. Gounaris ◽  
Wolfram Wiesemann

Abstract We study two-stage robust optimization problems with mixed discrete-continuous decisions in both stages. Despite their broad range of applications, these problems pose two fundamental challenges: (i) they constitute infinite-dimensional problems that require a finite-dimensional approximation, and (ii) the presence of discrete recourse decisions typically prohibits duality-based solution schemes. We address the first challenge by studying a K-adaptability formulation that selects K candidate recourse policies before observing the realization of the uncertain parameters and that implements the best of these policies after the realization is known. We address the second challenge through a branch-and-bound scheme that enjoys asymptotic convergence in general and finite convergence under specific conditions. We illustrate the performance of our algorithm in numerical experiments involving benchmark data from several application domains.



Sign in / Sign up

Export Citation Format

Share Document