saddle point approximation
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 20)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Junho Hong ◽  
James T. Liu

Abstract We investigate the S3 free energy of $$ \mathcal{N} $$ N = 3 Chern-Simons-matter quiver gauge theories with gauge group U(N)r (r ≥ 2) where the sum of Chern-Simons levels does not vanish, beyond the leading order in the large-N limit. We take two different approaches to explore the sub-leading structures of the free energy. First we evaluate the matrix integral for the partition function in the ’t Hooft limit using a saddle point approximation. Second we use an ideal Fermi-gas model to compute the same partition function, but in the limit of fixed Chern-Simons levels. The resulting expressions for the free energy F = − log Z are then compared in the overlapping parameter regime. The Fermi-gas approach also hints at a universal $$ \frac{1}{6} $$ 1 6 log N correction to the free energy. Since the quiver gauge theories we consider are dual to massive Type IIA theory, we expect the sub-leading correction of the planar free energy in the large ’t Hooft parameter limit to match higher-derivative corrections to the tree-level holographic dual free energy, which have not yet been fully investigated.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Jordan Cotler ◽  
Kristan Jensen

Abstract It has long been known that the coarse-grained approximation to the black hole density of states can be computed using classical Euclidean gravity. In this work we argue for another entry in the dictionary between Euclidean gravity and black hole physics, namely that Euclidean wormholes describe a coarse-grained approximation to the energy level statistics of black hole microstates. To do so we use the method of constrained instantons to obtain an integral representation of wormhole amplitudes in Einstein gravity and in full-fledged AdS/CFT. These amplitudes are non-perturbative corrections to the two-boundary problem in AdS quantum gravity. The full amplitude is likely UV sensitive, dominated by small wormholes, but we show it admits an integral transformation with a macroscopic, weakly curved saddle-point approximation. The saddle is the “double cone” geometry of Saad, Shenker, and Stanford, with fixed moduli. In the boundary description this saddle appears to dominate a smeared version of the connected two-point function of the black hole density of states, and suggests level repulsion in the microstate spectrum. Using these methods we further study Euclidean wormholes in pure Einstein gravity and in IIB supergravity on Euclidean AdS5× S5. We address the perturbative stability of these backgrounds and study brane nucleation instabilities in 10d supergravity. In particular, brane nucleation instabilities of the Euclidean wormholes are lifted by the analytic continuation required to obtain the Lorentzian spectral form factor from gravity. Our results indicate a factorization paradox in AdS/CFT.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2437
Author(s):  
Mark W. Matsen ◽  
Thomas M. Beardsley

Field-theoretic simulations (FTS) provide an efficient technique for investigating fluctuation effects in block copolymer melts with numerous advantages over traditional particle-based simulations. For systems involving two components (i.e., A and B), the field-based Hamiltonian, Hf[W−,W+], depends on a composition field, W−(r), that controls the segregation of the unlike components and a pressure field, W+(r), that enforces incompressibility. This review introduces researchers to a promising variant of FTS, in which W−(r) fluctuates while W+(r) tracks its mean-field value. The method is described in detail for melts of AB diblock copolymer, covering its theoretical foundation through to its numerical implementation. We then illustrate its application for neat AB diblock copolymer melts, as well as ternary blends of AB diblock copolymer with its A- and B-type parent homopolymers. The review concludes by discussing the future outlook. To help researchers adopt the method, open-source code is provided that can be run on either central processing units (CPUs) or graphics processing units (GPUs).


2021 ◽  
Vol 11 (10) ◽  
pp. 4700
Author(s):  
Yuyu Liu ◽  
Jinbao Zhang ◽  
Dan Zhang

Given the mutual information of finite-alphabet inputs cannot be calculated concisely and accurately over fading channels, this paper proposes a new method to calculate the mutual information. First, the applicability of the saddle point method is studied, and then the mutual information is estimated by the saddle point approximation method with known channel state information. Furthermore, we induce the expectation of mutual information over doubly correlated multiple-input multiple-output (MIMO) Rayleigh fading channels. The validity of the saddle point approximation method is verified by comparing the numerical results of the Monte Carlo method and the saddle point approximation method under different doubly correlated MIMO fading channel scenarios.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Borna Salehian ◽  
Mohammad Ali Gorji ◽  
Shinji Mukohyama ◽  
Hassan Firouzjahi

Abstract Axion-like fields heavier than about 10−27 eV are expected to oscillate in the radiation dominated epoch when the Hubble parameter drops below their mass. Considering the Chern-Simons coupling with a dark gauge boson, large amount of dark photons are produced during a short time interval through tachyonic resonance instability. The produced dark photons then source gravitational tensor modes leading to chiral gravitational waves. Through this process, one can indirectly probe a large parameter space of coupled axion-dark photon models. In this work we first find an analytic expression for the number density of the dark photons produced during the tachyonic resonance regime. Second, by using the saddle point approximation we find an analytic expression for the gravitational wave spectrum in terms of the mass, coupling and misalignment angle. Our analytic results can be used for the observational analysis of these types of scenarios.


2021 ◽  
pp. 72-75
Author(s):  
Adrian Tanasa

In this chapter we present how several analytic techniques, often used in combinatorics, appear naturally in various QFT issues. In the first section we show how one can use the Mellin transform technique to re-express Feynman integrals in a useful way for the mathematical physicist. Finally, we briefly present how the saddle point approximation technique can be also used in QFT. The first phrase of Philippe Flajolet and Robert Sedgewick's encyclopaedic book on analytic combinatorics gives the reader a first glimpse of what analytic combinatorics deals. In the following chapter, we present how several analytic techniques, often used in combinatorics,appear naturally in various QFT issues.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Emilio Ciuffoli ◽  
Jarah Evslin ◽  
Hosam Mohammed

AbstractIt is well known that neutrino oscillations may damp due to decoherence caused by the separation of mass eigenstate wave packets or by a baseline uncertainty of order the oscillation wave length. In this note we show that if the particles created together with the neutrino are not measured and do not interact with the environment, then the first source of decoherence is not present. This demonstration uses the saddle point approximation and also assumes that the experiment lasts longer than a certain threshold. We independently derive this result using the external wave packet model and also using a model in which the fields responsible for neutrino production and detection are treated dynamically. Intuitively this result is a consequence of the fact that the neutrino emission time does not affect the final state and so amplitudes corresponding to distinct emission times must be added coherently. This fact also implies that oscillations resulting from mass eigenstates which are detected simultaneously arise from neutrinos which were not created simultaneously but are nonetheless coherent, realizing the neutrino oscillation paradigm of Kobach, Manohar and McGreevy.


Sign in / Sign up

Export Citation Format

Share Document