Photocatalytic Degradation of Methylene Blue by Using ZnO/Longan Seed Activated Carbon Under Visible-Light Region

Author(s):  
Nguyen Van Hung ◽  
Bui Thi Minh Nguyet ◽  
Nguyen Huu Nghi ◽  
Dinh Quang Khieu
2012 ◽  
Vol 441 ◽  
pp. 544-548 ◽  
Author(s):  
Jun Min Wan ◽  
Zhang Zhu Wu ◽  
Hui Gang Wang ◽  
Xu Ming Zheng

The photocatalytic degradation of methylene blue (MB) under visible light irradiation is investigated by using the TiO2photocatalyst sensitized with meso-tetra (4-carboxyphenyl) porphyrin (H2TCPP) and/or meso-tetra (4-carboxyphenyl) copper porphyrin (CuTCPP). The XRD and XPS experimental results indicate that porphyrins are chemisorbed on the surface of TiO2through the O=C-O-Ti chemical bond. The degradation of methylene blue (MB) by H2TCPP and/or CuTCPP sensitized TiO2and under incandescent lamp irradiation is likely through injecting electrons from the photoexcited sensitizer to the conduction band of TiO2. The porphyrin-and/or metallic porphyrin-sensitized TiO2exhibits higher absorbability in the visible-light region than pure TiO2. All facts show that the porphyrin-, and/or metallic porphyrin-sensitized TiO2have potentially a significant application in wastewater treatment.


2020 ◽  
Vol 9 (3) ◽  
pp. 1-8
Author(s):  
Hung Nguyen Van ◽  
Nguyet Bui Thi Minh ◽  
Linh Bui Thi Thuy ◽  
Nghi Nguyen Huu ◽  
Tuoi Nguyen Thanh ◽  
...  

In the present study, the synthesis of ZnO/LSAC through pyrolysis of the carbonized material prepared from longan seed, zinc acetate in alkaline medium. The obtained materials was characterized by means of XRD, SEM, TEM, BET and UV-Vis-DRS. The XRD patterns of ZnO/LSAC nanocomposites were assigned to wurtzite structure of ZnO with crystallite size about 15 to 30 nm. SEM and TEM observations showed the spherical ZnO particles formed on the activated carbon. The band gap energy and specific surface area of ZnO/LSAC were found to be 2.79 eV and 294.4 m2/g, respectively. The photocatalytic activities of the prepared materials were evaluated for the degradation of Rhodamine B (RhB) dye. The removal of RhB was found to be pH dependent, and the optimized removal efficiency reached to 93.75% and the mineralization level was over 84,09% at initial RhB concentration of 40 mg.L-1 andpH 7 following 120 min under visible-light illumination. The kinetic studies showed the decolorizationof RhB followed pseudo first-order kinetics with the rate constant were determined kapp= 1.67Í10-2 min−1


2021 ◽  
Vol 10 (3) ◽  
pp. xx-xx
Author(s):  
Lan Nguyen Thi ◽  
Mai Nguyen Thi Tuyet ◽  
Hue Dang Thi Minh ◽  
Huyen Tran Thi Thu ◽  
Nga Nguyen Kim ◽  
...  

These experiment fabricated C3N4 powdermaterials by the calcinational method and fabricated Cu2O, Cu2O-3%C3N4, Cu2O-5%C3N4 nanomaterials by the hydrothermal method. The powdermaterials characteristics were studied by methods such as: X-ray diffraction (XRD); raman shift; scanning electron microscope (SEM); UV-vis solid absorption spectra. The photocatalytic activity of samples was studied by decomposition of methylene blue dye under visible light radiation. The results showed that the fabricated C3N4 sample was single phase with high porosity cotton structure. The Cu2O, Cu2O-3%C3N4 andCu2O-5%C3N4 samples had octahedral crystal structure with the crystal particle size was about 200-300 nm. The C3N4 doped Cu2O samples had octahedral crystal particles arranged more closely than that of Cu2O and filled in gaps by cotton, porous clusters of C3N4. The materials all had the absorption spectra expanded in the visible light region (l» 450-900 nm). The C3N4 doped Cu2O samples achieved the better photocatalytic efficiency than Cu2O and C3N4 samples in visible light region. The highest photocatalytic efficiency achieved 100% was of the Cu2O-3%C3N4 sample in the photodegradation of methylene blue dye after 30 minutes under visible light irradiation.


2016 ◽  
Vol 13 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Rani P. Barkul ◽  
Farah-Naaz A. Shaikh ◽  
Sagar D. Delekar ◽  
Meghshyam K. Patil

RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 6383-6394 ◽  
Author(s):  
Haishuai Li ◽  
Linlin Cai ◽  
Xin Wang ◽  
Huixian Shi

A noval ternary nanocomposite AgCl/Ag3PO4/g-C3N4 was successfully synthesized for photocatalytic degradation of methylene blue, methylparaben and inactivation of E. coli under visible light irradiation, showing excellent photocatalytic degradation performance and stability.


Sign in / Sign up

Export Citation Format

Share Document