Magnetic Properties of Mn2RhSi Heusler Alloy: Phase Transition and Hysteresis Behavior at a Very Low Temperature

Author(s):  
Ayşe Duran
Nukleonika ◽  
2015 ◽  
Vol 60 (3) ◽  
pp. 435-438
Author(s):  
Marian Kuzma ◽  
Wojciech Maziarz ◽  
Ireneusz Stefaniuk

Abstract Magnetic properties of a Ni50Mn35.5In14.5 Heusler ribbon were studied by ferromagnetic resonance (FMR) in the temperature range of 335–100 K. In the temperature region of 265–170 K, the FMR signal disappeared, in spite of the fact that this region comprised the main crystal transformation temperatures: Ms, Mf, As, Af. In the austenite crystal state, a weak antiferromagnetic interaction was observed, whereas ferromagnetism was detected in the low temperature martensitic state.


2006 ◽  
Vol 425 (1-2) ◽  
pp. 176-180 ◽  
Author(s):  
Libao Liu ◽  
Shiyou Fu ◽  
Zhuhong Liu ◽  
Guangheng Wu ◽  
Xiudong Sun ◽  
...  

2019 ◽  
Author(s):  
◽  
Ashutosh Dahal

Magnetism has intruded in every aspect of our life, from electric motors to hard disk data storage to space technologies. Developing strong understanding of underlying magnetic properties is of utmost importance to reach new frontiers of technological advancement. During my Ph.D. research, I have explored complementary research venues in three dimensional as well as two dimensional materials to understand basic magnetic properties that were either not known or explored for the first time. In this quest, I have studied three different physical systems with overlapping structural and/or magnetic and electrical properties: nickel monosilicides (NiSi), cobalt-doped calcium ruthenate (Ca(CoxRu1-x)O3) and europium manganese arsenide (EuMn2As2). One of the key aspects of my research is to understand how magnetic moments correlate with each other. Understanding this fundamental question can help us in elucidating the mechanism behind novel magnetic proper-ties manifested by the above mentioned materials. While NiSi is found to manifest a new phenomenon of magnetism driven intermediate metallic-superconducting phase, (Ca(CoxRu1-x)O3) tends to exhibit the metal-insulator transition with the critical phase boundary coinciding with the onset of strong continuum type magnetic fluctuations. Despite the presence of strong dynamic magnetic moment correlation, no trace of any type of static magnetic order is detected in any of these materials. On the other hand, strong static order with two consecutive antiferromagnetic phase transitions are detected in the intertwined honeycomb structured EuMn2As2. During the process of studying bulk materials using macroscopic measurement techniques, I have acquired detailed knowledge of chemical synthesis methods and several experimental measurement techniques, including the analysis of magnetic susceptibility and neutron scattering methods. The gained knowledge is applied in pinpointing the low temperature magnetic phase transition in an ongoing project in the lab of two dimensional artificial magnetic (permalloy) honeycomb lattice. Two dimensional magnetic honeycomb lattice provides a unique platform to study emergent magnetic phenomena in reduced degrees of freedom. The system is expected to develop novel spin solid order at low temperature. I have performed detailed analysis of non-linear susceptibility of permalloy honeycomb lattice, which revealed the non-thermodynamic nature of phase transition to the spin solid state in this system. In the ensuing chapters, I have explained each project in great detail. A brief overview of the previous research works and the motivations behind the study is provided in the Introduction section.


Author(s):  
Predrag Dabić ◽  
Volker Kahlenberg ◽  
Biljana Krüger ◽  
Marko Rodić ◽  
Sabina Kovač ◽  
...  

The new ambient-temperature hexagonal (space group P63 /mmc) polymorph of tripotassium ytterbium(III) disilicate (β-K3YbSi2O7) has been synthesized by the high-temperature flux method and subsequently structurally characterized. In the course of the temperature-dependent single-crystal diffraction experiments, a phase transformation of β-K3YbSi2O7 to a novel low-temperature orthorhombic phase (β′-K3YbSi2O7, space group Cmcm) has been observed at about 210 K. β-K3YbSi2O7 is isostructural with K3ErSi2O7, whereas β′-K3YbSi2O7 adopts a new type of structure. Both compounds can be built up from a regular alternation of layers of two types, which are parallel to the (001) plane. In the octahedral layer, YbO6 octahedra are isolated and linked by K1O6+3 polyhedra. The second, slightly thicker sorosilicate layer is formed by a combination of Si2O7 dimers and K2O6+3 polyhedra. The boundary between the layers is a pseudo-kagome oxide sheet based on 3.6.3.6 meshes. The phase transition is due to a tilt of the two SiO4 tetrahedra forming a single dimer which induces a decrease of the Si—O—Si angle between bridging Si—O bonds from 180° (dictated by symmetry in space group P63/mmc) to ≃164°. Magnetic characterization indicates that K3YbSi2O7 remains paramagnetic down to 2 K, showing no apparent influence of the phase transformation on its magnetic properties. Analysis of the magnetization data revealed the positions of the three lowest crystal field levels of the Yb3+ cations, as well as the corresponding projections of their angular momentum on the direction of the magnetic field.


1985 ◽  
Vol 52 ◽  
Author(s):  
E. Myers ◽  
G. A. Rozgonyi ◽  
D. K. Sadana ◽  
W. Maszara ◽  
J. J. Wortman ◽  
...  

ABSTRACTCross-section transmission electron microscopy (X-TEM) has been used to illustrate the amornhous/ crystalline (a/c) micromorphology dependence of various low dose Ge+ preamorphizatlon implants in Si. Ge+ Implants were done at room _emperature at energies of 150 and 300 keV in the dose range of 1 to 9E14 cm−2. These implants result in the formation of either a buried or a continuous amorphous layer, with rough a/c interfaces. Nucleation of spanning “hairpin” dislocations during subsequent solid phase epltaxy (SPE) regrowth is known to be related to rough a/c interface morphology. Very low temperature anneals (VLTA),less than 500°C where the rate of SPE is minimal, were utilized to sharpen rough a/c interfaces prior to subsequent SPE regrowth. Sharpening of rough a/c interfaces is shown to result from an unexpected reverse crystalline to amorphous phase transition. This reverse phase transition results in the dissolution of detached microcrystallltes located within the amorphous layer near the a/c interface. Utilization of VLTA interfacial smoothing prior to SPE regrowth therfore, results in the reduction of residual spanning “hairpin” dislocations along with homogenization of the amorphous material.


Sign in / Sign up

Export Citation Format

Share Document