scholarly journals Effects of Organo-Modified Clay Addition and Temperature on the Water Vapor Barrier Properties of Polyhydroxy Butyrate Homo and Copolymer Nanocomposite Films for Packaging Applications

2017 ◽  
Vol 26 (3) ◽  
pp. 1121-1132 ◽  
Author(s):  
Okan Akin ◽  
Funda Tihminlioglu
2013 ◽  
Vol 299 (1) ◽  
pp. 104-115 ◽  
Author(s):  
Giuliana Gorrasi ◽  
Roberto Pantani ◽  
Marius Murariu ◽  
Philippe Dubois

2013 ◽  
Vol 49 (11) ◽  
pp. 3471-3482 ◽  
Author(s):  
Roberto Pantani ◽  
Giuliana Gorrasi ◽  
Giovanni Vigliotta ◽  
Marius Murariu ◽  
Philippe Dubois

2014 ◽  
Vol 72 (2) ◽  
pp. 235-254 ◽  
Author(s):  
Farida Yahiaoui ◽  
Fayçal Benhacine ◽  
Hafida Ferfera-Harrar ◽  
Abderahmane Habi ◽  
Assia Siham Hadj-Hamou ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bedriye Ucpinar Durmaz ◽  
Ayse Aytac

Abstract Bio-based films containing poly (vinyl alcohol)/casein have poor mechanical and water vapor barrier properties that limit their use in packaging application. Some properties such as water resistance and tensile strength can be increased by the cross-linking process. For this reason, poly(vinyl alcohol)/sodium caseinate (PVA/SC) blends were crosslinked by adding glutaraldehyde (GLA) and glyoxal (GL) at different ratios in this work. The films were prepared by solution casting technique. Fourier transform infrared analysis (FTIR) confirmed the crosslinking reaction between the components. As a result of the crosslinking, the thicknesses, water vapor barrier properties and water contact angle values of the films have increased. The total soluble matters (TSM) of PVA/SC film decreased with increasing amounts of crosslinkers and GLA crosslinked films exhibited lower TSM. The addition of GLA and GL resulted in more strengthened films as verified by the tensile test. On the other hand, GLA crosslinked films were more flexible than un-crosslinked and GL crosslinked PVA/SC films. The hydrophilic PVA/SC film became more hydrophobic with the increasing amounts of crosslinkers. With the crosslinking, the PVA/SC film became more thermally stable. In conclusion, the crosslinked PVA/SC films were obtained with suitable properties for packaging applications.


2020 ◽  
Vol 26 ◽  
pp. 100561
Author(s):  
Cesare Rovera ◽  
Hasan Türe ◽  
Mikael S. Hedenqvist ◽  
Stefano Farris

RSC Advances ◽  
2018 ◽  
Vol 8 (38) ◽  
pp. 21651-21657 ◽  
Author(s):  
Jiajie Wang ◽  
Ting Pan ◽  
Jian Zhang ◽  
Xiaozhi Xu ◽  
Qing Yin ◽  
...  

A hydrophobic film is fabricated by spin-coating of Tween 80 modified layered double hydroxide and polydimethylsiloxane alternately, which displays enhanced oxygen/water vapor barrier properties and anti-corrosion behavior toward metal substrates.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 969
Author(s):  
Sonia Bujok ◽  
Jiří Hodan ◽  
Hynek Beneš

The high capacity of calcinated layered double hydroxides (LDH) to immobilize various active molecules together with their inherent gas/vapor impermeability make these nanoparticles highly promising to be applied as nanofillers for biodegradable polyester packaging. Herein, trihexyl(tetradecyl)phosphonium decanoate ionic liquid (IL) was immobilized on the surface of calcinated LDH. Thus, the synthesized nanoparticles were used for the preparation of polycaprolactone (PCL)/LDH nanocomposites. Two different methods of nanocomposite preparation were used and compared: microwave-assisted in situ ring opening polymerization (ROP) of ε-caprolactone (εCL) and melt-blending. The in situ ROP of εCL in the presence of LDH nanoparticles with the immobilized IL led to homogenous nanofiller dispersion in the PCL matrix promoting formation of large PCL crystallites, which resulted in the improved mechanical, thermal and gas/water vapor barrier properties of the final nanocomposite. The surface-bonded IL thus acted as nanofiller surfactant, compatibilizer, as well as thermal stabilizer of the PCL/LDH nanocomposites. Contrary to that, the melt-blending caused a partial degradation of the immobilized IL and led to the production of PCL nanocomposites with a heterogenous nanofiller dispersion having inferior mechanical and gas/water vapor barrier properties.


2010 ◽  
Vol 174 ◽  
pp. 450-453 ◽  
Author(s):  
Ya Na Li ◽  
Kyong Ho Cha ◽  
Qing Hui He

Nanocomposite films of ZnO/HDPE were prepared via melt blending and hot compression molding process. The morphology, DSC, mechanical and barrier properties of the films were investigated. The results showed that a better dispersion of modified nanoparticles at content of 0.5wt% in HDPE matrix occurred and the improvement of the HDPE films in tensile strength and tear strength was achieved by incorporating modified-ZnO nanoparticles up to 0.5wt% in contrast with the original nano-ZnO/HDPE composite films. It was also found that the addition of modified nano-ZnO to neat HDPE caused to increase crystallinity and enhance the barrier property of nano-ZnO/HDPE composite films against water vapor and oxygen.


Sign in / Sign up

Export Citation Format

Share Document