Processing time generation schemes for parallel machine scheduling problems with various correlation structures

2013 ◽  
Vol 17 (6) ◽  
pp. 569-586 ◽  
Author(s):  
Yang -Kuei Lin ◽  
Michele E. Pfund ◽  
John W. Fowler
Author(s):  
Bartłomiej Przybylski

AbstractWe consider a number of parallel-machine scheduling problems in which jobs have variable processing times. The actual processing time of each job is described by an arbitrary positive function of the position it holds on a machine. However, the function itself may additionally depend on the job or a machine this job was assigned to. Our aim is to find a schedule that minimizes the objectives of maximum completion time or the total completion time. We present a full set of polynomial solutions for the cases of jobs with no precedence constraints. We also show that the case of single-chained jobs may be not easier in general, but some polynomial results can be obtained, too.


2013 ◽  
pp. 189-215
Author(s):  
Alessandro Agnetis ◽  
Jean-Charles Billaut ◽  
Stanisław Gawiejnowicz ◽  
Dario Pacciarelli ◽  
Ameur Soukhal

2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Chia-Lun Hsu ◽  
Jan-Ray Liao

The objective of this paper is to minimize both the makespan and the total completion time. Since parallel-machine scheduling which contains the function constraint problem has been a new issue, this paper explored two parallel-machine scheduling problems with function constraint, which refers to the situation that the two machines have a same function but one of the machines has another. We pointed out that the function constraint occurs not only in the manufacturing system but also in the service system. For the makespan problem, we demonstrated that it is NP-hard in the ordinary sense. In addition, we presented a polynomial time heuristic for this problem and have proved its worst-case ratio is not greater than 5/4. Furthermore, we simulated the performance of the algorithm through computational testing. The overall mean percent error of the heuristic is 0.0565%. The results revealed that the proposed algorithm is quite efficient. For the total completion time problem, we have proved that it can be solved in On4 time.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1460
Author(s):  
Hamza Jouhari ◽  
Deming Lei ◽  
Mohammed A. A. Al-qaness ◽  
Mohamed Abd Elaziz ◽  
Robertas Damaševičius ◽  
...  

Scheduling can be described as a decision-making process. It is applied in various applications, such as manufacturing, airports, and information processing systems. More so, the presence of symmetry is common in certain types of scheduling problems. There are three types of parallel machine scheduling problems (PMSP): uniform, identical, and unrelated parallel machine scheduling problems (UPMSPs). Recently, UPMSPs with setup time had attracted more attention due to its applications in different industries and services. In this study, we present an efficient method to address the UPMSPs while using a modified harris hawks optimizer (HHO). The new method, called MHHO, uses the salp swarm algorithm (SSA) as a local search for HHO in order to enhance its performance and to decrease its computation time. To test the performance of MHHO, several experiments are implemented using small and large problem instances. Moreover, the proposed method is compared to several state-of-art approaches used for UPMSPs. The MHHO shows better performance in both small and large problem cases.


Sign in / Sign up

Export Citation Format

Share Document