scholarly journals On the Asymptotic Limit of the Three Dimensional Vlasov–Poisson System for Large Magnetic Field: Formal Derivation

2016 ◽  
Vol 165 (4) ◽  
pp. 765-784 ◽  
Author(s):  
Pierre Degond ◽  
Francis Filbet
2000 ◽  
Vol 10 (09) ◽  
pp. 1305-1332 ◽  
Author(s):  
L. SAINT-RAYMOND

Consider a plasma in a strong constant magnetic field with self-consistent electric field. We present here the formal derivation that leads to the so-called guiding center approximation, and justify it in the case of a well-prepared initial density of particles. More precisely, we prove that the motion of the particles can be approximatively decomposed as the sum of a fast rotation on Larmor circles, an advection along the magnetic lines and a small drift orthogonal to both electric and magnetic fields.


Heat Transfer ◽  
2021 ◽  
Author(s):  
Hafiz Abdul Wahab ◽  
Syed Zahir Hussain Shah ◽  
Assad Ayub ◽  
Zulqurnain Sabir ◽  
Muhammad Bilal ◽  
...  

Author(s):  
Venkatesh Puneeth ◽  
Sarpabhushana Manjunatha ◽  
Bijjanal Jayanna Gireesha ◽  
Rama Subba Reddy Gorla

The induced magnetic field for three-dimensional bio-convective flow of Casson nanofluid containing gyrotactic microorganisms along a vertical stretching sheet is investigated. The movement of these microorganisms cause bioconvection and they act as bio-active mixers that help in stabilising the nanoparticles in the suspension. The two forces, Thermophoresis and Brownian motion are incorporated in the Mathematical model along with Stefan blowing. The resulting model is transformed to ordinary differential equations using similarity transformations and are solved using [Formula: see text] method. The Velocity, Induced Magnetic field, Temperature, Concentration of Nanoparticles, and Motile density profiles are interpreted graphically. It is observed that the Casson parameter decreases the flow velocity and enhances the temperature, concentration, and motile density profiles and also it is noticed that the blowing enhances the nanofluid profiles whereas, suction diminishes the nanofluid profiles. On the other hand, it is perceived that the rate of heat conduction is enhanced with Thermophoresis and Brownian motion.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
P. Kim ◽  
R. Jorge ◽  
W. Dorland

A simplified analytical form of the on-axis magnetic well and Mercier's criterion for interchange instabilities for arbitrary three-dimensional magnetic field geometries is derived. For this purpose, a near-axis expansion based on a direct coordinate approach is used by expressing the toroidal magnetic flux in terms of powers of the radial distance to the magnetic axis. For the first time, the magnetic well and Mercier's criterion are then written as a one-dimensional integral with respect to the axis arclength. When compared with the original work of Mercier, the derivation here is presented using modern notation and in a more streamlined manner that highlights essential steps. Finally, these expressions are verified numerically using several quasisymmetric and non-quasisymmetric stellarator configurations including Wendelstein 7-X.


1990 ◽  
Vol 216 ◽  
Author(s):  
Kamakhya P. Ghatak ◽  
S. N. Biswas

ABSTRACTIn this paper we studied the thermoelectric power under classically large magnetic field (TPM) in quantum wells (QWs), quantum well wires (QWWS) and quantum dots (QDs) of Bi by formulating the respective electron dispersion laws. The TPM increases with increasing film thickness in an oscillatory manner in all the cases. The TPM in QD is greatest and the least for quantum wells respectively. The theoretical results are in agreement with the experimental observations as reported elsewhere.


Sign in / Sign up

Export Citation Format

Share Document