Multiple characteristics of three‐dimensional radiative Cross fluid with velocity slip and inclined magnetic field over a stretching sheet

Heat Transfer ◽  
2021 ◽  
Author(s):  
Hafiz Abdul Wahab ◽  
Syed Zahir Hussain Shah ◽  
Assad Ayub ◽  
Zulqurnain Sabir ◽  
Muhammad Bilal ◽  
...  
2009 ◽  
Vol 132 (1) ◽  
Author(s):  
E. E. Tzirtzilakis ◽  
N. G. Kafoussias

The three-dimensional laminar and steady boundary layer flow of an electrically nonconducting and incompressible magnetic fluid, with low Curie temperature and moderate saturation magnetization, over an elastic stretching sheet, is numerically studied. The fluid is subject to the magnetic field generated by an infinitely long, straight wire, carrying an electric current. The magnetic fluid far from the surface is at rest and at temperature greater of that of the sheet. It is also assumed that the magnetization of the fluid varies with the magnetic field strength H and the temperature T. The numerical solution of the coupled and nonlinear system of ordinary differential equations, resulting after the introduction of appropriate nondimensional variables, with its boundary conditions, describing the problem under consideration, is obtained by an efficient numerical technique based on the common finite difference method. Numerical calculations are carried out for the case of a representative water-based magnetic fluid and for specific values of the dimensionless parameters entering into the problem, and the obtained results are presented graphically for these values of the parameters. The analysis of these results showed that there is an interaction between the motions of the fluid, which are induced by the stretching surface and by the action of the magnetic field, and the flow field is noticeably affected by the variations in the magnetic interaction parameter β. The important results of the present analysis are summarized in Sec. 6.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Umar ◽  
Rizwan Akhtar ◽  
Zulqurnain Sabir ◽  
Hafiz Abdul Wahab ◽  
Zhu Zhiyu ◽  
...  

In this manuscript, a computational paradigm of technique shooting is exploited for investigation of the three-dimensional Eyring-Powell fluid with activation energy over a stretching sheet with slip arising in the field of fluid dynamics. The problem is modeled and resulting nonlinear system of PDEs is transformed into nonlinear system of ODEs using well-known similarity transformations. The strength of shooting based computing approach is employed to analyze the dynamics of the system. The proposed technique is well-designed for different scenarios of the system based on three-dimensional non-Newtonian fluid with activation energy over a stretching sheet. Slip condition is also incorporated to enhance the physical and dynamical analysis of the system. The proposed results are compared with the bvp4C method for the correctness of the solver. Graphical and numerical illustrations are used to envisage the behavior of different proficient physical parameters of interest including magnetic parameter, stretching rate parameter, velocity slip parameter, Biot number on velocity, and Lewis number on temperature and concentration.


2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Gauri Shanker Seth ◽  
Rohit Sharma ◽  
Bidyasagar Kumbhakar ◽  
Ali J Chamkha

Purpose An investigation of hydromagnetic two dimensional boundary layer flow with heat transfer of a viscous, incompressible, electrically conducting, heat absorbing and optically thick heat radiating fluid over a permeable exponentially stretching sheet considering the effects of viscous and Joule dissipations in the presence of velocity and thermal slip is carried out. Design/methodology/approach Using similarity transform, governing differential equations representing mathematical model of the problem are solved with the help of fourth-order Runge-Kutta method along with shooting technique. Numerical solutions of fluid velocity and fluid temperature are depicted graphically for various values of pertinent flow parameters whereas numerical values of wall velocity gradient and wall temperature gradient are displayed graphically for various values of pertinent flow parameters. Findings Numerical results obtained in this paper are compared with earlier published results and are found to be in excellent agreement. Magnetic field and suction tend to enhance the wall velocity gradient whereas dimensionless co-ordinate, injection and velocity slip factor have reverse effect on it. Suction and heat absorption tend to enhance wall temperature gradient whereas magnetic field, velocity slip factor, injection, thermal radiation, thermal slip factor and viscous dissipation have reverse effect on it. Originality/value The investigation of this problem may have bearing in several engineering processes such as extrusion of plastic sheet, annealing and tinning of copper wire, paper production, crystal growing and glass blowing, continuous casting of metals and spinning of fibers.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Tarek M. A. El-Mistikawy

The traditionally ignored physical processes of viscous dissipation, Joule heating, streamwise heat diffusion, and work shear are assessed and their importance is established. The study is performed for the MHD flow due to a linearly stretching sheet with induced magnetic field. Cases of prescribed surface temperature, heat flux, surface feed (injection or suction), velocity slip, and thermal slip are considered. Sample numerical solutions are obtained for the chosen combinations of the flow parameters.


Sign in / Sign up

Export Citation Format

Share Document