scholarly journals Homogenization of Coupled Fast-Slow Systems via Intermediate Stochastic Regularization

2021 ◽  
Vol 183 (2) ◽  
Author(s):  
Maximilian Engel ◽  
Marios Antonios Gkogkas ◽  
Christian Kuehn

AbstractIn this paper we study coupled fast-slow ordinary differential equations (ODEs) with small time scale separation parameter $$\varepsilon $$ ε such that, for every fixed value of the slow variable, the fast dynamics are sufficiently chaotic with ergodic invariant measure. Convergence of the slow process to the solution of a homogenized stochastic differential equation (SDE) in the limit $$\varepsilon $$ ε to zero, with explicit formulas for drift and diffusion coefficients, has so far only been obtained for the case that the fast dynamics evolve independently. In this paper we give sufficient conditions for the convergence of the first moments of the slow variable in the coupled case. Our proof is based upon a new method of stochastic regularization and functional-analytical techniques combined via a double limit procedure involving a zero-noise limit as well as considering $$\varepsilon $$ ε to zero. We also give exact formulas for the drift and diffusion coefficients for the limiting SDE. As a main application of our theory, we study weakly-coupled systems, where the coupling only occurs in lower time scales.

2004 ◽  
Vol 03 (01) ◽  
pp. 69-90 ◽  
Author(s):  
BEHZAD HAGHIGHI ◽  
ALIREZA HASSANI DJAVANMARDI ◽  
MOHAMAD MEHDI PAPARI ◽  
MOHSEN NAJAFI

Viscosity and diffusion coefficients for five equimolar binary gas mixtures of SF 6 with O 2, CO 2, CF 4, N 2 and CH 4 gases are determined from the extended principle of corresponding states of viscosity by the inversion technique. The Lennard–Jones 12-6 (LJ 12-6) potential energy function is used as the initial model potential required by the technique. The obtained interaction potential energies from the inversion procedure reproduce viscosity within 1% and diffusion coefficients within 5%.


2008 ◽  
Vol 40 (02) ◽  
pp. 529-547
Author(s):  
Francisco J. Piera ◽  
Ravi R. Mazumdar ◽  
Fabrice M. Guillemin

In this paper we consider reflected diffusions with positive and negative jumps, constrained to lie in the nonnegative orthant of ℝ n . We allow for the drift and diffusion coefficients, as well as for the directions of reflection, to be random fields over time and space. We provide a boundary behavior characterization, generalizing known results in the nonrandom coefficients and constant directions of the reflection case. In particular, the regulator processes are related to semimartingale local times at the boundaries, and they are shown not to charge the times the process expends at the intersection of boundary faces. Using the boundary results, we extend the conditions for product-form distributions in the stationary regime to the case when the drift and diffusion coefficients, as well as the directions of reflection, are random fields over space.


The rate of evaporation of drops of dibutyl phthalate and butyl stearate of radius approx. 0.5 mm. has been studied by means of a microbalance over a range of atmospheric pressures down to approx. 0*1 mm. of mercury. Wide departures from Langmuir’s evaporation formula were found to occur at these low pressures, but results are in good accordance with the theory of droplet evaporation advanced by Fuchs which hitherto has not been tested experimentally. This experimental verification of Fuch’s theory for droplets of medium size evaporating at low pressures shows that the theory can be applied to the evaporation of very small drops at atmospheric pressure. The vapour pressures of the above liquids have been measured by Knudsen’s method and the evaporation and diffusion coefficients calculated fro n the experimental data.


1994 ◽  
Vol 353 ◽  
Author(s):  
Sergey V. Stefanovsky ◽  
Igor A. Ivanov ◽  
Anatolii N. Gulin

AbstractTo immobilize a high sulfate radioactive wastes a system Na2O-A12O3-P2O5-SO3 has been chosen as one where glasses have a relatively low melting points and good chemical durability. Glasses within partial system 44 Na2O, 20 A12O3 (36-x) P2O5 x SO3 have been prepared at 1000 °C. A possibility of assimilation up to 12 mole % of SO3 has been established. The basic properties of sulfate-containing glasses as density, microhardness, thermal expansion coefficient, transformation and deformation temperatures, viscosity, electric resistivity, leach rate of ions and diffusion coefficients of 22Na, 35S, 90Sr and 137Cs have been measured. Glass structure by infrared and EPR spectroscopies has been investigated.


2009 ◽  
Vol 19 (10) ◽  
pp. 3397-3406
Author(s):  
YUNQUAN KE ◽  
CHUNFANG MIAO

In this paper, the global exponential stability of Chua's reaction–diffusion CNN system is investigated. For this system, some sufficient conditions ensuring the existence and global exponential stability of the equilibrium point is derived by using homeomorphism mapping, the property of coefficient matrix and analytical techniques. Finally, three illustrative examples are given to show the effectiveness of our results.


2017 ◽  
Vol 11 ◽  
pp. 283-296
Author(s):  
A. F. Bogatyrev ◽  
O. A. Makeenkova ◽  
V. R. Belalov ◽  
M. A. Kucherenko

Sign in / Sign up

Export Citation Format

Share Document