rate of evaporation
Recently Published Documents


TOTAL DOCUMENTS

296
(FIVE YEARS 35)

H-INDEX

30
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Yvonne Sena Akosua Loh ◽  
Obed Fiifi Fynn ◽  
Evans Manu ◽  
George Yamoah Afrifa ◽  
Millicent Obeng Addai ◽  
...  

Abstract The relationship between groundwater and surface water in the Lake Bosumtwi impact crater has been assessed using hydrochemical data and stable water isotopes of δ18O and δD. This study aimed to define likely groundwater flow and recharge zones, estimate the rate of evaporation, and examine the relationship between the lake and groundwater in the study area. The results of Q-Mode hierarchical cluster analysis (HCA) clearly differentiate the lake water from the groundwater based on their spatial relationship. These preliminary results indicated that groundwater recharge occurs on the hilltops of the crater, where it is slightly acidic with low levels of dissolved minerals, characterized by short residence time and rapid unrestricted vertical infiltration and recharge. The groundwater becomes more mineralized with longer contact times and deeper circulation with the host rock, while it flows from the recharge areas towards the lake at lower elevations. Analyses of stable water isotopes of δ18O and δD showed a high evaporation rate on the lake surface, of ~90% with a relatively significant evaporative enrichment, whereas groundwater showed a relatively lower evaporation rate ranging between 54-60%. Both reservoirs do not appear to be hydraulically connected, and where such a connection exists, it is expected to favour the lake.


2022 ◽  
pp. 1-17
Author(s):  
Safa M Aldarabseh ◽  
Salah Abdallah

Abstract The world's need for drinkable water is increasing with a growing population. The desalination process using solar energy is the cheapest and most straightforward method that can be used to generate pure water from saline water by utilizing energy from the sun's free heat source. A semispherical and chamber stepwise basin solar still with an inclined glass cover, with and without PV powered electrical heaters as another power source can increase the rate of evaporation of saline water, thus increasing the productivity of semispherical solar still. In this investigation, a conventional solar still and semispherical solar still with and without PV-powered electrical heaters were invented and worked in parallel with the experimental setup to make a good comparison between these models. The experimental results show that stepped semispherical with PV-powered electrical heater and without PV-powered electrical heater solar stills enhanced the productivity of freshwater from a conventional solar still by 156.6% and 72.5%, respectively. The theoretically simulated model is obtained using Mathcad software, and is compared with experimental results. Semispherical solar still productivity increases with increased solar intensity and with a PV-powered electrical heater as an additional power source. The theoretical results concluded from the mathematical model are in good agreement with experimental results.


2021 ◽  
Vol 30 (5) ◽  
pp. 84-97
Author(s):  
I. A. Pustovalov

Introduction. The aim of the research project is to study the effect produced by one type of carbon nanostructures, or astralenes, on processes of extinguishing oil product flame using finely sprayed water. Materials and research methods. The research is focused on fire extinguishing suspensions used in modular water mist installations for the fire extinguishing of oil products. Astralene-modified distilled water, having the volumetric concentration of nanostructures equal to 0.05–1.0 percent, was used as a fire extinguishing substance under research. The experiment was focused on the study of thermophysical characteristics of fire extinguishing liquids, such as density, dynamic viscosity, surface tension, specific heat of vaporization. Also, studies were carried out to identify the rate of evaporation, the distribution of droplet sizes of sprayed fire extinguishing compositions, and the time needed to extinguish the model source of ignition of oil products.Research results. The dispersion of nanostructures of fire-extinguishing liquids allows to increase their density, surface tension by 20.6 %, increase the specific heat of vaporization if the volumetric concentration of astralenes is equal to 0.25 and 0.5 %, and boost the dynamic viscosity by 6.68–15.38 % at the temperature of 20 °С. The research was carried out to find the rate of evaporation of droplets of the modified fire-extinguishing liquid. It was found that an increase in the volumetric concentration of nanostructures from 0.05 to 0.5 % causes reduction in the evaporation rate.The droplet speed increases if the volumetric dispersion of astalenes goes up to 0 to 0.25 %. However, a further increase in the volumetric concentration of astralenes to 1.0 % causes a reduction in their speed. The extinguishing time was identified using a laboratory fire extinguishing installation. The distribution of droplet sizes of fire-extinguishing compositions is in the range of 20 to 160 microns. The fire extinguishing capacity of the installation was highest if a fire extinguishing composition had a 0.5 % volumetric concentration of astralenes.Conclusions. The modification of a fire extinguishing composition by carbon nanostructures leads to a change in its thermophysical characteristics. The addition of this composition to the installation, used at facilities involved in the processing of petroleum products, will increase its fire extinguishing ability. Further areas of research may include the development of astralene stabilization methods for suspensions and adaptation to low temperatures.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1366
Author(s):  
Quentin Peter Campbell ◽  
Marco le Roux ◽  
Fardis Nakhaei

Additional moisture added in coal stockpiles due to rain and other climatic processes causes a significant problem worldwide, which leads to not only decrease in the heating value of the coal but also creates an extra efficiency penalty. Therefore, it is important to make some predictions for control of coal moisture within stockpiles after the rainfall. When the rain falls on the stockpile, it either runs off the surface or infiltrates the stockpile. The infiltrated water may evaporate from the surface, drain or stay within the stockpile. The aims of this study (parts 1 and 2) are to describe and compare the changes in coal moisture content following rainfall events. The mechanisms of runoff, infiltration and drainage after rainfall were described in the first paper of this series. In part 2 the influence of coal particle size and ambient conditions on the rate and depth of moisture evaporation within the stockpile is investigated. The laboratory experiments showed cyclic events of adsorbing moisture overnight and desorbing this moisture during the day as part of the coal surface evaporation process. The rate of evaporation from the surface of the fine coal stockpile was faster than the coarse stockpile; however, the coarse stockpile experienced a more efficient evaporation process because of its porous structure. Fine coal beds experienced evaporation only near the surface, while the maximum influencing layer of evaporation is a depth of 0.4 cm below the surface in coarse coal beds.


Author(s):  
Kumaresan A.

Manufacture of common salt by evaporation of natural brine has been renowned from past. The southern state of Tamil nadu in India, 75% of the salt is made by solar evaporation of sea brine, 20% from subsoil brine and therefore the rest from backwater. For the manufacture of salt and its by-products by the evaporation of brine, the information of each the composition of the brine and its phase chemistry is important. Underground brine (subsoil) is considered to be the sea water cut-off from oceans and concentrated by sunlight. It contains the elements of chloride, sulphate, calcium, magnesium, sodium and potassium in higher proportion. The physical parameter of rainfall data was collected because it interferes by diluting the brine and reducing the rate of evaporation. The monitoring of the physical and chemical parameters of brine at various stages viz, source, reservoir, condenser, crystallizer and bittern of the subsoil salt-pan gives plentiful possibilities for the management of the salt-pans. The results of chemical parameters and their seasonal dissimilarities were studied for a period of one year. (Jan-Dec 2019).


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Kai Cui ◽  
Xiaozheng Zhao ◽  
Mingming Hu ◽  
Chen Yang ◽  
Guanchang Xie

The degree of damage to heritage structures in arid areas can be particularly serious due to long-term exposure to a harsh arid climate. In this paper, the characteristics of evaporation and cracking of soil taken from heritage structures with different NaCl concentrations are experimentally investigated by subjecting saturated soil samples taken from the Wang-Jing tower in Weihui City, Henan Province. Making soil sample of water content of 110% is used to test the rate of evaporation at a constant temperature and humidity, through which the changes in the evaporation rate, water content, fracture development, and fracture fractal dimension are obtained. The results show that, (1) with higher water content, NaCl can affect the evaporation process by increasing the matrix suction of the soil of the Wang-Jing tower and then affect the cracking process of soil. When 0%, 1%, 2%, and 4% NaCl are added, the residual water content of the samples is 3.15%, 4.23%, 4.82%, and 5.89%, respectively, which show an obvious trend of increasing water content; (2) the period with a stable fracture fractal dimension of the samples is shortened with an increase in NaCl concentration, and its maximum fractal dimension is reduced in turn; and (3) at a lower water content, NaCl crystallizes and precipitates in the pores of the soil, which provide a cementitious effect among the soil particles, thus inhibiting crack development.


Author(s):  
Etini Etefia ◽  
L. O. Odokuma

Heavy crude oil spillage on soil threatens productivity and affects the natural biota of the ecosystem. Evaporation is an important parameter increases crude oil density, viscosity and fraction of lower molecular weight substances which reduce its infiltration into the soil and groundwater. The evaporation of heavy crude oil showed API of 21.5, viscosity of 15mm2/s, density 0.8952 g/cm3, pour point of 11.37. The crude oil was exposed to solar radiation for 35 days. The percentage reduction in mass of the crude oil and temperature on five day interval showed 8.22(38OC) on day 0, on day 5 was 8.13(34oC), on day 10 was 5.92(39oC), on day 15 was 5.38(39oC), on day 20 was 3.16(37oC), on day 25 was 2.94(31oC), on day 20 was 2.56 (41oC) and on day 35 was 1.79(38oC). The lighter molecules evaporated first leaving the heavier molecules behind causing a reduction in the rate of evaporation with time. This analysis will be provide insight to modelling oil spill in terrestrial ecosystem.


Author(s):  
A. Е. Korenchenko ◽  
A. A. Zhukova

Experiments on measuring the rate of evaporation of liquid sessile droplets into air show that the rate of evaporation increases in the presence of forced convection flows. However, data on the effect of convection on evaporation are often contradictory and should be clarified. The paper presents a numerical analysis of evaporation from the surface of a water droplet subjected to forced convection in the gas phase. The drop is located on a smooth horizontal isothermal substrate; the mode with constant contact angle is considered. The shape of the drop has axial symmetry, the same for the velocities and pressure. Forced convection compatible with the symmetry conditions are represented by flows directed downward along the axis of the system and diverging along the sides near the drop and the substrate. The mathematical model is constructed for evaporation controlled by diffusion in the gas phase and takes into account surface tension, gravity, and viscosity in both media, buoyancy and Marangoni convection. The results indicate the existence of the mutual influence of liquid and gaseous media. Thus, a drop vibrates under the influence of movements in the atmosphere, which generates a density wave in the gas: the drop «sounds». The magnitude of the velocity in a liquid is 50 times less than the characteristic velocity in air. It is found that the evaporation rate does not change in the presence of forced convection flows, which contradicts most of the experimental works. The reason for the discrepancies is supposed to be the appearance of nonequilibrium conditions at the boundary of the condensed phase: under these conditions, the evaporation regime ceases to be diffusional.


2021 ◽  
Author(s):  
Saad Eddine Lachhab ◽  
A Bliya ◽  
E Al Ibrahmi ◽  
L Dlimi

Abstract In order to improve distillate water, this paper presents a study of the solar dome system that is considered as one of the most important economical solutions in the domain of drinking water production. For this, a mathematical model was built from equations describing the optical and thermal phenomenon involved in this process. The concentration of radiation and the heat flow were simulated in each 0.1m² of the dome which using the metrological parameters of Morocco’s region Rabat-Salé-Kenitra. The results can follow the evolution of the temperature of glass, salt water, point dew temperature, saturation pressure and evaporation rate as well as humidity reached in August month for the study zone. For this, a numerical implementation on Matlab and Ansys are compared with measurements for the same parameters showed in the domain study of single slope. The comparison results are more significant by the rise of the ray concentration rate reached until 99% if the inclination angle of the heliostat divided into three intervals. The saturation pressure increases as long as with the rate of evaporation and the humidity that produces ordinary daily fresh water.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mahdi Mahmoudpour ◽  
Siamak Gholami ◽  
Majid Ehteshami ◽  
Marjan Salari

Water pollution is one of the most critical global issues. Meanwhile, the problem of water pollution of rivers especially in Iran is rising due to expansion of agricultural and industrial applications. Due to a large number of sewer catchments, there are some dam reservoirs like ZHAVE in Iranian state of Kurdistan that have not been able to collect significant amount of water since last 10 years. Removal of heavy metals as contaminants from runoffs and recycling of water is a necessity and a vital issue in the world. Various methods and standards are invented and used to isolate and remove all types of pollutants. This study focuses on the purification and removal of contaminants in water sources using the phytoremediation method by introducing Vetiver grass species in the case of floating treatment wetland (FTW). This study’s preliminary purpose is to investigate a practical remedial solution and improvement methodology for the water quality of reservoirs and rivers by growing the floating Vetiver island method. The results show that following parameters such as COD by 97%, TN by 90%, phosphorus by 66%, TDS by 26%, and evapotranspiration by 40% were reduced. Therefore, we concluded that for a wastewater with varying neutrient concentrations such as in ZHAVE dam, concentration of nutrients N and P was controlled and consequently inhibition and prevention of the eutrophication of water resources in the medium and long term became possible due to reduction in the rate of evaporation from reservoirs.


Sign in / Sign up

Export Citation Format

Share Document