Three-Dimensional Vortex Flows of Two–Velocity Incompressible Media in the Case of Constant Volume Saturation

2015 ◽  
Vol 211 (6) ◽  
pp. 760-766
Author(s):  
N. M. Zhabborov ◽  
Kh. Kh. Imomnazarov ◽  
P. V. Korobov
1978 ◽  
Vol 56 (10) ◽  
pp. 1390-1394
Author(s):  
K. P. Srivastava

An extensive numerical study on specific heat at constant volume (Cv) for ordered and isotopically disordered lattices has been made. Cv at various temperatures for ordered and disordered linear and two-dimensional lattices have been compared and no appreciable difference in Cv between these two structures has been observed. Effect of concentration of light atoms on Cv for three-dimensional isotopically disordered lattices has also been shown.In spite of taking next-nearest-neighbour interaction into account, no substantial change in Cv between the ordered and isotopically disordered linear lattices has been found. It is shown that the low lying modes contribute substantially at low temperatures.


1989 ◽  
Vol 11 (4) ◽  
pp. 431-445 ◽  
Author(s):  
R. Esposito ◽  
M. Pulvirenti ◽  
H. Neunzert

Author(s):  
X L Tang ◽  
F J Wang ◽  
Y J Li ◽  
G H Cong ◽  
X Y Shi ◽  
...  

This work uses a commercial computational fluid dynamics code to predict three-dimensional (3D) vortex flows in a large centrifugal-pump station under construction in China and proposes relevant vortex-eliminating schemes. Because of the complex nature of the vortex flows in sumps, different turbulence models, namely, standard k–ε, re-normalization group k–ε and realizable k–ε models, are first used to investigate their feasibility in predicting flows in a small physical model of an open pump sump, and various vortex streamlines and strength in the sump are predicted, analysed, and compared with the experimental data. The comparisons show that the realizable k–ε model predicts the position and strength of free-surface, sidewall-attached, and floor-attached vortices more accurately than the other two models. Then, the realizable k–ε model is used here to investigate 3D vortex flows in a large pumping-station sump. All the various vortices, such as free-surface, wall-attached vortices, are successfully predicted. Thus, based on the information of location, shape, size, and strength of the calculated vortices, three types of vortex-eliminating devices are proposed and their corresponding vortex suppression effects are analysed. These results will be used as reference for the safe and stable operation of the Hui–Nan–Zhuang pumping station in the future.


1994 ◽  
Vol 269 ◽  
pp. 247-264 ◽  
Author(s):  
A. Kribus ◽  
S. Leibovich

Weakly nonlinear descriptions of axisymmetric cnoidal and solitary waves in vortices recently have been shown to have strongly nonlinear counterparts. The linear stability of these strongly nonlinear waves to three-dimensional perturbations is studied, motivated by the problem of vortex breakdown in open flows. The basic axisymmetric flow varies both radially and axially, and the linear stability problem is therefore nonseparable. To regularize the generalization of a critical layer, viscosity is introduced in the perturbation problem. In the absence of the waves, the vortex flows are linearly stable. As the amplitude of a wave constituting the basic flow increases owing to variation in the level of swirl, stability is first lost to non-axisymmetric ‘bending’ modes. This instability occurs when the wave amplitude exceeds a critical value, provided that the Reynolds number is larger enough. The critical wave amplitudes for instability typically are large, but not large enough to create regions of closed streamlines. Examination of the most-amplified eigenvectors shows that the perturbations tend to be concentrated downstream of the maximum streamline displacement in the wave, in a position consistent with the observed three-dimensional perturbations in the interior of a bubble type of vortex breakdown.


Sign in / Sign up

Export Citation Format

Share Document