scholarly journals Dimensions of Fractional Brownian Images

Author(s):  
Stuart A. Burrell

AbstractThis paper concerns the intermediate dimensions, a spectrum of dimensions that interpolate between the Hausdorff and box dimensions. Potential-theoretic methods are used to produce dimension bounds for images of sets under Hölder maps and certain stochastic processes. We apply this to compute the almost-sure value of the dimension of Borel sets under index-$$\alpha $$ α fractional Brownian motion in terms of dimension profiles defined using capacities. As a corollary, this establishes continuity of the profiles for Borel sets and allows us to obtain an explicit condition showing how the Hausdorff dimension of a set may influence the typical box dimension of Hölder images such as projections. The methods used propose a general strategy for related problems; dimensional information about a set may be learned from analysing particular fractional Brownian images of that set. To conclude, we obtain bounds on the Hausdorff dimension of exceptional sets, with respect to intermediate dimensions, in the setting of projections.

The univariate Weierstrass–Mandelbrot function is generalized to many variables to model higher dimensional stochastic processes such as undersea topography. Because this topography is difficult to measure at small length scales over the many large regions that affect long-ranged acoustic propagation in the ocean, one needs a stochastic description that can be extrapolated to both large and small features. Fractal surfaces are a convenient framework for such a description. Computer-generated plots for the two-variable case are presented. It is shown that in the continuum limit the multivariate function is equivalent to the multivariate fractional Brownian motion.


2019 ◽  
Vol 24 (4) ◽  
Author(s):  
Yuliya Mishura ◽  
Sergiy Shklyar

We consider the distance between the fractional Brownian motion defined on the interval [0,1] and the space of Gaussian martingales adapted to the same filtration. As the distance between stochastic processes, we take the maximum over [0,1] of mean-square deviances between the values of the processes. The aim is to calculate the function a in the Gaussian martingale representation ∫0ta(s)dWs that minimizes this distance. So, we have the minimax problem that is solved by the methods of convex analysis. Since the minimizing function a can not be either presented analytically or calculated explicitly, we perform discretization of the problem and evaluate the discretized version of the function a numerically.


2000 ◽  
Vol 14 (12n13) ◽  
pp. 1399-1420 ◽  
Author(s):  
PAUL EMBRECHTS ◽  
MAKOTO MAEJIMA

Self-similar processes such as fractional Brownian motion are stochastic processes that are invariant in distribution under suitable scaling of time and space. These processes can typically be used to model random phenomena with long-range dependence. Naturally, these processes are closely related to the notion of renormalization in statistical and high energy physics. They are also increasingly important in many other fields of application, as there are economics and finance. This paper starts with some basic aspects on self-similar processes and discusses several topics from the point of view of probability theory.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Gianni Pagnini ◽  
Antonio Mura ◽  
Francesco Mainardi

The Master Equation approach to model anomalous diffusion is considered. Anomalous diffusion in complex media can be described as the result of a superposition mechanism reflecting inhomogeneity and nonstationarity properties of the medium. For instance, when this superposition is applied to the time-fractional diffusion process, the resulting Master Equation emerges to be the governing equation of the Erdélyi-Kober fractional diffusion, that describes the evolution of the marginal distribution of the so-called generalized grey Brownian motion. This motion is a parametric class of stochastic processes that provides models for both fast and slow anomalous diffusion: it is made up of self-similar processes with stationary increments and depends on two real parameters. The class includes the fractional Brownian motion, the time-fractional diffusion stochastic processes, and the standard Brownian motion. In this framework, the M-Wright function (known also as Mainardi function) emerges as a natural generalization of the Gaussian distribution, recovering the same key role of the Gaussian density for the standard and the fractional Brownian motion.


2018 ◽  
Vol 23 ◽  
Author(s):  
Lucas Benigni ◽  
Clément Cosco ◽  
Assaf Shapira ◽  
Kay Jörg Wiese

Author(s):  
Gianni Pagnini

AbstractThe aim of this Short Note is to highlight that the generalized grey Brownian motion (ggBm) is an anomalous diffusion process driven by a fractional integral equation in the sense of Erdélyi-Kober, and for this reason here it is proposed to call such family of diffusive processes as Erdélyi-Kober fractional diffusion. The ggBm is a parametric class of stochastic processes that provides models for both fast and slow anomalous diffusion. This class is made up of self-similar processes with stationary increments and it depends on two real parameters: 0 < α ≤ 2 and 0 < β ≤ 1. It includes the fractional Brownian motion when 0 < α ≤ 2 and β = 1, the time-fractional diffusion stochastic processes when 0 < α = β < 1, and the standard Brownian motion when α = β = 1. In the ggBm framework, the Mainardi function emerges as a natural generalization of the Gaussian distribution recovering the same key role of the Gaussian density for the standard and the fractional Brownian motion.


2019 ◽  
Vol 09 (04) ◽  
pp. 2030001
Author(s):  
Arturo Jaramillo ◽  
David Nualart

We examine the probability that at least two eigenvalues of a Hermitian matrix-valued Gaussian process, collide. In particular, we determine sharp conditions under which such probability is zero. As an application, we show that the eigenvalues of a real symmetric matrix-valued fractional Brownian motion of Hurst parameter [Formula: see text], collide when [Formula: see text] and do not collide when [Formula: see text], while those of a complex Hermitian fractional Brownian motion collide when [Formula: see text] and do not collide when [Formula: see text]. Our approach is based on the relation between hitting probabilities for Gaussian processes with the capacity and Hausdorff dimension of measurable sets.


Sign in / Sign up

Export Citation Format

Share Document