Formulation development and characterization of cellulose/ polyacrylic acid – based polymers on the release of celecoxib from extended release tablets

2020 ◽  
Vol 27 (8) ◽  
Author(s):  
Muhammad Umair Saleem ◽  
Muhammad Iqbal Nasiri ◽  
Shahiq-uz Zaman ◽  
Nouman Khan ◽  
Muhammad Azeem
2019 ◽  
Vol 16 (5) ◽  
pp. 1351-1365
Author(s):  
Muhammad Iqbal Nasiri ◽  
Rabia Ismail Yousuf ◽  
Muhammad Harris Shoaib ◽  
Kamran Zaheer ◽  
Tariq Ali ◽  
...  

Drug Delivery ◽  
2006 ◽  
Vol 13 (4) ◽  
pp. 277-285 ◽  
Author(s):  
Jaleh Varshosaz ◽  
N. Tavakoli ◽  
F. Roozbahani

2019 ◽  
Vol 123 ◽  
pp. 856-865 ◽  
Author(s):  
M.E. Abd El-Aziz ◽  
S.M.M. Morsi ◽  
Dina M. Salama ◽  
M.S. Abdel-Aziz ◽  
Mohamed S. Abd Elwahed ◽  
...  

2021 ◽  
Vol 11 (21) ◽  
pp. 10466
Author(s):  
Yuan Wang ◽  
Cuifeng Du ◽  
Mengmeng Cui

In order to solve the problem of road dust pollution, an ecological dust suppressant for road surfaces has been developed using monomer, orthogonal, and optimization experiments and based on the dust raising mechanism. A humectant, hygroscopic agent, coagulant and surfactant and their concentration ranges have been determined through monomer experiment. The preliminary formula of the dust suppressant has been obtained through orthogonal experiment, with the water loss rate, moisture content rate, viscosity value, and surface tension value serving as experimental indexes. The optimal formula for the dust suppressor has been calculated through an optimization experiment, with the toxicity, moisture absorption and retention performance of plants, and the relative damage rate of plant seeds serving as experimental indexes. Based on the performance characterization of ecological road dust suppressant, the ecologically and environmentally friendly dust suppressant demonstrates fine moisture absorption and retention performance, good wind and rain erosion resistance, and no toxicity. The ecological road dust suppressant developed herein covers extensive raw material sources. It is ecologically and environmentally friendly, fit for most urban roads, and has a fine dust suppression effect. Meanwhile, it also can bring in good economic and social benefits, demonstrating its broad application prospects.


Author(s):  
Gavaskar Basani ◽  
Madhusudan Rao Yamsani ◽  
Ramya Sri Sura

The aim of current work was to grow extended release multiple unit pellets of Tamsulosin Hydrochloride, is an alpha-blocker, used for the healing of the symptoms of a prostate gland condition called BPH (benign prostatic hyperplasia) by extrusion- spheronization (E/S) and solution/suspension layering (S/S) method. In the Extrusion-Spheronization, A ratio of 75:25, 67:33, 64:36 Tamsulosin Hydrochloride and Microcrystalline cellulose were mixed for making drug pellets and extended release (ER) coating was performed in fluidized bed processor (FBP) by solution/suspension layering with Ethyl cellulose (aqueous. dispersion, 4 cps and 7 cps) and Hypromellose (5cps) with different ratios % weight buildups accordingly. In the Solution/suspension layering (S/S) method, Tamsulosin Hydrochloride drug pellets were prepared by layering onto MCC spheres in FBP. These drug pellets were further coated for extended release with HPMC, 5cps and EC, 7cps. In drug coating stage, drug and different binder (Hypromellose, 5 cps) concentrations 8, 10, 12, 14 mg/unit were coated onto the cores for optimization of binder concentration. The weight of MCC spheres were optimized for further formulations. For all the drug coated pellets, ER coating was given with EC, 7cps and HPMC, 5 cps at a coating level of 8% weight by weight. In the extrusion- spheronization (E/S) Optimization of Drug pellets: Among the trials TD3 (Tamsulosin HCl and MCC) showed good mechanical strength with better yield due to increased MCC concentration. Optimization of Extended Release Coating: Optimized TD3 drug pellets were coated with ER coating using water insoluble polymer (Aq.EC 25% dispersion/ EC, 4cps/ EC, 7cps) and water soluble polymer (HPMC, 5cps). Among these polymers, extended release coating was optimized (TD3E14) with the combination of EC, 7cps and HPMC, 5cps at 8% weight build up. In the Solution/Suspension layering: Optimization of binder concentration in drug coating stage: HPMC, 5cps with 12 mg/unit for TF7 was optimized based on %yield. Optimization of MCC spheres in drug coating stage in formulation of ER pellets with different weight drug pellets: The weight of MCC spheres (160, 170, 180, 190 mg/unit) used in the drug coating stage with binder HPMC, 5cps (12 mg/unit). These drug pellets were given with ER coating at 8% weight buildup by using EC, 7cps and HPMC, 5cps. Among these trials, TF7E7 was optimized. Based on the investigations of the present study, conclusions was. formulating low dose, high soluble, BCS class I drug- Tamsulosin Hydrochloride ER formulation by extrusion-spheronization showed flexibility for batch processing and cost effectiveness while solution/suspension layering was process feasible but time consuming due to high drug loading.


Sign in / Sign up

Export Citation Format

Share Document