scholarly journals Formulation Development and Performance Characterization of Ecological Dust Suppressant for Road Surfaces in Cities

2021 ◽  
Vol 11 (21) ◽  
pp. 10466
Author(s):  
Yuan Wang ◽  
Cuifeng Du ◽  
Mengmeng Cui

In order to solve the problem of road dust pollution, an ecological dust suppressant for road surfaces has been developed using monomer, orthogonal, and optimization experiments and based on the dust raising mechanism. A humectant, hygroscopic agent, coagulant and surfactant and their concentration ranges have been determined through monomer experiment. The preliminary formula of the dust suppressant has been obtained through orthogonal experiment, with the water loss rate, moisture content rate, viscosity value, and surface tension value serving as experimental indexes. The optimal formula for the dust suppressor has been calculated through an optimization experiment, with the toxicity, moisture absorption and retention performance of plants, and the relative damage rate of plant seeds serving as experimental indexes. Based on the performance characterization of ecological road dust suppressant, the ecologically and environmentally friendly dust suppressant demonstrates fine moisture absorption and retention performance, good wind and rain erosion resistance, and no toxicity. The ecological road dust suppressant developed herein covers extensive raw material sources. It is ecologically and environmentally friendly, fit for most urban roads, and has a fine dust suppression effect. Meanwhile, it also can bring in good economic and social benefits, demonstrating its broad application prospects.

2020 ◽  
Vol 8 ◽  
Author(s):  
Julien Favreau ◽  
María Soto ◽  
Rajeev Nair ◽  
Pastory M. Bushozi ◽  
Siobhán Clarke ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Fernando José Borges Gomes ◽  
Jorge Luiz Colodette ◽  
Auphélia Burnet ◽  
Larisse Aparecida Ribas Batalha ◽  
Fernando Almeida Santos ◽  
...  

Eucalypt wood is becoming the most important raw material for the pulp industries in South America. However, due to the high wood cost in comparison to other raw material sources, nonwoody materials are also being investigated aiming at pulp production. In this way, this paper aimed at the evaluation of eighteen eucalypt clones obtained from the Brazilian Genolyptus project, regarding their potential characteristics for pulp production. Aiming at the same goal, two species of elephant grass were also evaluated as alternative raw material sources. Through the analyses of the anatomic and chemical characteristics, five eucalypt clones and one elephant grass species were indicated for pulp production and biorefinery application. The results of this study indicate the high technological quality ofEucalyptusclones evaluated and indicate that they can be used for biorefinery applications since they have the suitable characteristics. In general, the eucalypt clones are less moist and denser and contain fewer minerals and extraneous materials than the elephant grass species, which make them more attractive for utilization in deconstruction studies aiming at production of bioproducts.


Author(s):  
Nguyen Tuong Vy ◽  
Nguyen Thi Khoi Pham ◽  
Lam Quoc Ha

Polyvinyl alcohol (PVA) is well-known in the packaging industry, especially in the food and medical fields with the ability to be completely biodegradable and easily soluble in cold water therefore products made from it are the environmentally friendly materials. However, the disadvantages of this polymer as quick dissolubility in water, poor moisture retention, weak mechanical properties reduce its applications. In this study, PVA, reinforced by “green” components at the nanometer-level such as nanocellulose fibers (CNF), graphene oxide (GO) nanosheets showed improvements in properties. Mechanical properties of all of nanocomposite films showed improvements in stress at break and modulus. Especially, reinforced GO and CNF films increased almost doubled and improved more 40% in modulus than the pure PVA film and films reinforced by only GO or CNF. When immersed in water (neutral pH) at room temperature, graphene oxide-reinforced films not only had effective improvements in swelling time but also supported to decrease water retension of film added CNF. The combined reinforcement also indicated a benefit in reducing the rate of water vapor loss of the film as well as the efficiency in declining the moisture absorption of the nanocomposite films. The PVA films reinforced by nanocellulose fibers and graphene oxide sheets overcomed some of the PVA's shortcomings. This helped expanding its applications in the field of environmentally friendly nanocomposite films.


2008 ◽  
Vol 59 (2) ◽  
pp. 129-134
Author(s):  
Ion Teoreanu ◽  
Roxana Lucia Dumitrache ◽  
Stefania Stoleriu

Any change of the raw material sources for glazes, economically, ecologically motivated, and also from the glaze quality point of view, is conditioned by the molecular formula rationalization and by the variation limits of the molecular formula, respectively. The proper glaze compositions are placed within their limit variation intervals with optimized processing and utilization properties. For this purpose, the rationalization criteria and procedures of molecular formulas are summarized in the present paper, as well as the results referring to their rationalization obtained in the authors� previous work. Thus, one starts from a base of raw materials that are selected, usable and also accessible for the design and producing of the glazes. On these bases the groundwork and the design equation for the glaze recipes are developed, exemplified for a single glaze. For an easy access to results, computer programs are used for an easy access to results.


Sign in / Sign up

Export Citation Format

Share Document