Poly (phenyl sulfone)/graphite composite as a robust low-cost, comb-type interdigited sensor for detection of organic solvent vapors

2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Dolunay Sakar Dasdan
2021 ◽  
Vol 5 (7) ◽  
pp. 188
Author(s):  
Chen Fang ◽  
Haiqing Xiao ◽  
Tianyue Zheng ◽  
Hua Bai ◽  
Gao Liu

Cycling stability is a key challenge for application of silicon (Si)-based composite anodes as the severe volume fluctuation of Si readily leads to fast capacity fading. The binder is a crucial component of the composite electrodes. Although only occupying a small amount of the total composite mass, the binder has major impact on the long-term electrochemical performance of Si-based anodes. In recent years, water-based binders including styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) have attracted wide research interest as eco-friendly and low-cost alternatives for the conventional poly(vinylidene difluoride) (PVDF) binder in Si anodes. In this study, Si-based composite anodes are fabricated by simple solid mixing of the active materials with subsequent addition of SBR and CMC binders. This approach bypasses the use of toxic and expansive organic solvents. The factors of binder, silicon, and graphite materials have been systematically investigated. It is found that the retained capacities of the anodes are more than 440 mAh/g after 400 cycles. These results indicate that organic solvent free process is a facile strategy for producing high performance silicon/graphite composite anodes.


Sangyo Igaku ◽  
1993 ◽  
Vol 35 (4) ◽  
pp. 290-291
Author(s):  
Shigeru TANAKA ◽  
Shigeri KIDO ◽  
Yukio SEKI ◽  
Shunichiro IMAMIYA

2015 ◽  
Vol 15 (1) ◽  
pp. 61-66
Author(s):  
Ranjan Nepal ◽  
Raja Ram Pradhananga

Lead oxide-graphite composite electrode for pH measurement had been fabricated with different percentage of PbO2 in the composite. The proportions of lead oxide affected the sensitivity of the electrode. The electrode composed of 50% lead oxide and 50% graphite gave reproducible result and behaved in Nernstian manner with a potential gradient of -58.8±0.3 mV per unit change in pH. Metal ions such as iron (II), iron (III) and lead (II) interfered in the measurement of pH, while silver (I), copper (II), oxidizing agents such as dichromate and permanganate do not interfere. In absence of interfering ion, the lead oxide-graphite composite electrode could be used for the measurement of pH from 2 to 11. This electrode can also be used as an indicator electrode for acid base titrations. Low cost, quick response, easy to fabricate are some of the advantages of the lead oxide-graphite composite electrode. This electrode is also found to be sensitive to Pb2+ -ions and can be used as a Pb2+-ion sensor up to 10-4M.DOI: http://dx.doi.org/10.3126/njst.v15i1.12015  Nepal Journal of Science and TechnologyVol. 15, No.1 (2014) 61-66


2020 ◽  
Vol 26 (4) ◽  
pp. 126-132
Author(s):  
Su-Yong Nam ◽  
Shinyoung Kim ◽  
Se-Hoon Park ◽  
Hyun Jin Nam

2015 ◽  
Vol 12 (12) ◽  
pp. 44-47
Author(s):  
Suchi Srivastava ◽  
Raja Ram Pradhananga

A solid Fe2O3-graphite composite electrode was prepared and investigated for use as a potentiometric pH sensor. The electrode was constructed by mixing iron (III) oxide, oxidized graphite and wax that was put over silver disc onto a polypropylene rod. The response of the electrode was investigated by measuring electrode potential as a function of pH.The effect of composition of the electrode material (Fe2O3 and oxidized graphite ration) on the electrode response was investigated. The electrode with 40% Fe2O3, 30% graphite and 30% wax by mass was found to give the best potentiometric response. This electrode behaves in Nernstian manner with a potentiometric gradient of 56.6±0.4 mV per unit change in pH at 25?C within the working range of pH 2-9.The electrode was also used for the end-point detection in potentiometric acid-base titrations and found to be an excellent electrode for pH-metric titration. The effect of oxidation of electrode on pH response was investigated by dipping electrode in 0.1N KMnO4, 1:1HNO3 and 0.1N Ce4+ solutions for different interval of time. This treatment of the electrode with oxidizing agents increased the standard electrode potential of the electrode however potential gradient per unit change in pH remains unaltered. Low cost, quick response and easy to prepare are the advantages of the iron oxide - graphite composite electrode as a pH sensor. However some metal ions and oxidising agents interfered in the determination of pH using this electrode which is the limitation of using these electrodes.Scientific World, Vol. 12, No. 12, September 2014, page 44-47


2020 ◽  
Vol 44 (6) ◽  
pp. 2228-2235 ◽  
Author(s):  
Shengchao Hou ◽  
Yan Lv ◽  
Xueyan Wu ◽  
Jixi Guo ◽  
Qingqing Sun ◽  
...  

Ultralight, hydrophobic, highly compressible and low-cost coal oxide-modified graphene aerogels exhibit high absorption capacity and high solar thermal conversion efficiency.


Sign in / Sign up

Export Citation Format

Share Document