scholarly journals Estimation of Breakthrough Time on Activated Carbon Fixed Bed Adsorbers for Multicomponent Organic Solvent Vapors

1987 ◽  
Vol 9 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Hajime HORI ◽  
Isamu TANAKA ◽  
Takashi AKIYAMA
Sangyo Igaku ◽  
1990 ◽  
Vol 32 (5) ◽  
pp. 350-351
Author(s):  
Hajime HORI ◽  
Isamu TANAKA ◽  
Takashi AKIYAMA

2020 ◽  
Vol 82 (4) ◽  
pp. 732-746
Author(s):  
Jian Liu ◽  
Zhengji Yi ◽  
Ziling Ou ◽  
Tianhui Yang

Abstract The application of activated carbon fiber supported nanoscale zero-valent iron (ACF-nZVI) in the continuous removal of Cr(VI) and methyl orange (MO) from aqueous solution was studied in depth. The breakthrough curves of Cr(VI) in a fixed bed with ACF-nZVI were measured, and compared with those in the fixed bed with ACF. The catalytic wet peroxide oxidation (CWPO) process for MO was also carried out using ACF-nZVI after reacting with Cr(VI) in the same fixed bed. The results showed that the breakthrough time of ACF-nZVI was significantly longer than that of ACF. Higher pH values were unfavorable for the Cr(VI) removal. The breakthrough time increased with decreasing inlet Cr(VI) concentration or increasing bed height. The Yoon–Nelson and bed depth service time (BDST) models were found to show good agreement with the experimental data. The Cr(VI) removal capacity when using ACF-nZVI was two times higher than that when using ACF. Under the optimal empty bed contact time of 1.256 min, the fixed bed displayed high MO conversion (99.2%) and chemical oxygen demand removal ratio (55.7%) with low Fe leaching concentration (<5 mg/L) after continuous running for 240 min. After three cycles, the conversion of MO remained largely unchanged.


2013 ◽  
Vol 68 (10) ◽  
pp. 2294-2300 ◽  
Author(s):  
Jianfei Liu ◽  
Jiajun Chen ◽  
Lin Jiang ◽  
Cheng Chen

The adsorption behavior of phenanthrene (PHE) in Triton X-100 (TX100) solutions with fixed activated carbon (AC) bed was studied to recover the surfactant. The effect of various parameters like bed depths, flow rates, influent TX100 concentration, and influent PHE concentration were investigated. The breakthrough time of both TX100 and PHE increased with the increase of bed height and decrease of flow rate and influent concentration. In the case of fixed length, a lower flow rate, higher concentration of TX100, and lower concentration of PHE will benefit the longer effective surfactant recovery time. The adsorption data were integrated into bed depth service time models. The height of exchange zone of TX100 should be much shorter than that of PHE, which provides conditions to separate the hydrophobic organic compound from surfactant solutions with AC in a fixed bed. It is likely that the adsorption process is controlled by hydrophobic interaction.


Sign in / Sign up

Export Citation Format

Share Document