Interrelationship of indoor radon concentrations, soil-gas flux, and meteorological parameters

2005 ◽  
Vol 264 (2) ◽  
pp. 381-385 ◽  
Author(s):  
M. E. Kitto
Author(s):  
Mohammademad Adelikhah ◽  
Amin Shahrokhi ◽  
Morteza Imani ◽  
Stanislaw Chalupnik ◽  
Tibor Kovács

A comprehensive study was carried out to measure indoor radon/thoron concentrations in 78 dwellings and soil-gas radon in the city of Mashhad, Iran during two seasons, using two common radon monitoring devices (NRPB and RADUET). In the winter, indoor radon concentrations measured between 75 ± 11 to 376 ± 24 Bq·m−3 (mean: 150 ± 19 Bq m−3), whereas indoor thoron concentrations ranged from below the Lower Limit of Detection (LLD) to 166 ± 10 Bq·m−3 (mean: 66 ± 8 Bq m−3), while radon and thoron concentrations in summer fell between 50 ± 11 and 305 ± 24 Bq·m−3 (mean 115 ± 18 Bq m−3) and from below the LLD to 122 ± 10 Bq m−3 (mean 48 ± 6 Bq·m−3), respectively. The annual average effective dose was estimated to be 3.7 ± 0.5 mSv yr−1. The soil-gas radon concentrations fell within the range from 1.07 ± 0.28 to 8.02 ± 0.65 kBq·m−3 (mean 3.07 ± 1.09 kBq·m−3). Finally, indoor radon maps were generated by ArcGIS software over a grid of 1 × 1 km2 using three different interpolation techniques. In grid cells where no data was observed, the arithmetic mean was used to predict a mean indoor radon concentration. Accordingly, inverse distance weighting (IDW) was proven to be more suitable for predicting mean indoor radon concentrations due to the lower mean absolute error (MAE) and root mean square error (RMSE). Meanwhile, the radiation health risk due to the residential exposure to radon and indoor gamma radiation exposure was also assessed.


2020 ◽  
Vol 13 (12) ◽  
pp. 6657-6673
Author(s):  
Noriko Nakayama ◽  
Yo Toma ◽  
Yusuke Iwai ◽  
Hiroshi Furutani ◽  
Toshinobu Hondo ◽  
...  

Abstract. We developed a mass spectrometric soil-gas flux measurement system using a portable high-resolution multi-turn time-of-flight mass spectrometer, called MULTUM, and we combined it with an automated soil-gas flux chamber for the continuous field measurement of multiple gas concentrations with a high temporal resolution. The developed system continuously measures the concentrations of four different atmospheric gases (NO2, CH4, CO2, and field soil–atmosphere flux measurements of greenhouse gases (NO2, O2) ranging over 6 orders of magnitude at one time using a single gas sample. The measurements are performed every 2.5 min with an analytical precision (2 standard deviations) of ±34 ppbv for NO2; ±170 ppbv, CH4; ±16 ppmv, CO2; and ±0.60 vol %, O2 at their atmospheric concentrations. The developed system was used for the continuous field soil–atmosphere flux measurements of greenhouse gases (NO2, CH4, and CO2) and O2 with a 1 h resolution. The minimum quantitative fluxes (2 standard deviations) were estimated via a simulation as 70.2 µgNm-2h-1 for NO2; 139 µgCm-2h-1, CH4; 11.7 mg C m−2 h−1, CO2; and 9.8 g O2 m−2 h−1, O2. The estimated minimum detectable fluxes (2 standard deviations) were 17.2 µgNm-2h-1 for NO2; 35.4 µgCm-2h-1, CH4; 2.6 mg C m−2 h−1, CO2; and 2.9 g O2 m−2 h−1, O2. The developed system was deployed at the university farm of the Ehime University (Matsuyama, Ehime, Japan) for a field observation over 5 d. An abrupt increase in NO2 flux from 70 to 682 µgNm-2h-1 was observed a few hours after the first rainfall, whereas no obvious increase was observed in CO2 flux. No abrupt NO2 flux change was observed in succeeding rainfall events, and the observed temporal responses at the first rainfall were different from those observed in a laboratory experiment. The observed differences in temporal flux variation for each gas component show that gas production processes and their responses for each gas component in the soil are different. The results of this study indicate that continuous multiple gas concentration and flux measurements can be employed as a powerful tool for tracking and understanding underlying biological and physicochemical processes in the soil by measuring more tracer gases such as volatile organic carbon, reactive nitrogen, and noble gases, and by exploiting the broad versatility of mass spectrometry in detecting a broad range of gas species.


2021 ◽  
Author(s):  
Chiara Coletti ◽  
Giancarlo Ciotoli ◽  
Eleonora Benà ◽  
Erika Brattich ◽  
Giorgia Cinelli ◽  
...  

<p>In the volcanic area of the Euganean Hills district (100 km<sup>2</sup>), the indoor radon often exceeds the threshold level of 300 Bq/m<sup>3 </sup>stipulated by the Council Directive 2013/59/Euratom, thus suggesting the need to investigate the possible link between observed radon concentrations and the local geology (Trotti et al., 1998,1999; Strati et al., 2014). More recently, statistical and geostatistical analysis on rock samples identified high U, Th and K concentrations associated with areas characterised by trachyte and rhyolite lithologies (Tositti et al., 2017). With this contribution, we completed our investigation on the natural radioactivity in the Euganean Hills district extending the rocks dataset, performing on-site soil gas survey, and considering other important factors which can locally increase the radon occurrence, such as hydrothermal alterations, types of soils (e.g., geochemistry or presence of organic matters), and faults. Furthermore, we elaborated a Geogenic Radon Potential map to assess the local spatial relationships between the measured soil gas radon concentrations and seven proxy-variables: fault density (FD), total gamma radiation dose (TGDR), <sup>220</sup>Rn (Tn), digital terrain mode (SLOPE), moisture index (MI), heat load index (HLI) and soil permeability (PERM). Empirical Bayesian Regression Kriging (EBRK) was used to develop the most accurate hazard map of the considered area, thus, providing the local administration an up-to-date decisional tool for the land use planning. For the high radon emission measured, the high density of dwelling, and its geomorphological features, the Euganean Hills district represented a very meaningful case of study.  </p><p> </p><p>Trotti, F., Tanferi, A., Lanciai, M., Mozzo, P., Panepinto, V., Poli, S., Predicatori, F., Righetti, F., Tacconi, A., Zorzine, R., 1998. Mapping of areas with elevated indoor radon levels in Veneto. Radiat. Prot. Dosim. 78 (1), 11–14.</p><p>Trotti, F., Tanferi, A., Bissolo, F., Fustegato, R., Lanciai, M., Mozzo, P., Predicatori, F., Querini, P., Righetti, F., Tacconi, A., 1999. A Survey to Map Areas with Elevated Indoor Radon Levels in Veneto, Radon in the Living Environment, 19-23 April 1999, Athens, Greece, 859–868.</p><p>Strati V., Baldoncini M., Bezzon G.P, Broggini C., Buso G.P., Caciolli A., Callegari I., Carmignani L, Colonna T, Fiorentini G., Guastaldi E., Kaçeli Xhixhaf M., Mantovani F, Menegazzo R., Moub L., Rossi Alvarez C., Xhixha G., Zanon A., 2014. Total natural radioactivity, Veneto (Italy). Journal of Maps, Vol. 11, Issue 4, 545–551. http://doi.org/10.1080/17445647.2014.923348.</p><p>Tositti L., Cinelli G., Brattich E., Galgaro A., Mostacci D., Mazzoli C., Massironi M., Sassi R., 2017. Assessment of lithogenic radioactivity in the Euganean Hills magmatic district (NE Italy). J. Environ. Radioact. 166, 259–269. https://doi.org/10.1016/j.jenvrad.2016.07.011</p>


1994 ◽  
Vol 56 (1-4) ◽  
pp. 21-27 ◽  
Author(s):  
D.B. Henschel (INVITED)

Abstract This paper reviews the full range of techniques that have been installed in existing US houses for the purpose of reducing indoor radon concentrations resulting from soil gas entry. The review addresses the performance, installation and operating costs, applicability, mechanisms, advantages, and disadvantages of each radon mitigation technique. Active soil depressurisation (ASD) techniques are the measures most widely used by mitigation contractors. ASD techniques consistently and reliably provide the highest radon reductions, at costs often competitive with the less effective alternatives. The large majority of existing US houses having elevated radon can be effectively treated using ASD. Various other techniques can be used in houses where ASD is difficult or impractical to apply, or where lesser radon reductions are acceptable. However, these other techniques are always less effective, less reliable, or less well demonstrated than ADS.


1992 ◽  
Vol 26 (4) ◽  
pp. 709-714 ◽  
Author(s):  
Stuart A. Batterman ◽  
Brian C. McQuown ◽  
Prahlad N. Murthy ◽  
Andrew R. McFarland
Keyword(s):  
Soil Gas ◽  
Gas Flux ◽  

2019 ◽  
Vol 95 (5) ◽  
Author(s):  
Ianina Altshuler ◽  
Jennifer Ronholm ◽  
Alice Layton ◽  
Tullis C Onstott ◽  
Charles W. Greer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document