Performance evaluation of spectral deconvolution analysis tool (SDAT) software used for nuclear explosion radionuclide measurements

2008 ◽  
Vol 276 (2) ◽  
pp. 407-413 ◽  
Author(s):  
K. M. Foltz Biegalski ◽  
S. R. Biegalski ◽  
D. A. Haas
2020 ◽  
Author(s):  
Gizachew Kabite Wedajo ◽  
Misgana Kebede Muleta ◽  
Berhan Gessesse Awoke

Abstract. Precipitation is a crucial driver of hydrological processes. Ironically, reliable characterization of its spatiotemporal variability is challenging. Ground-based rainfall measurements using rain gauges can be more accurate. However, installing a dense gauging network to capture rainfall variability can be impractical. Satellite-based rainfall estimates (SREs) can be good alternatives, especially for data-scarce basins like in Ethiopia. However, SREs rainfall is plagued with uncertainties arising from many sources. The objective of this study was to evaluate the performance of the latest versions of several SREs products (i.e., CHIRPS2, IMERG6, TAMSAT3, and 3B42/3) for the Dhidhessa River Basin (DRB). Both statistical and hydrologic modelling approaches were used for performance evaluation. The Soil and Water Analysis Tool (SWAT) was used for hydrological simulations. The results showed that whereas all four SREs products are promising to estimate and detect rainfall for the DRB, the CHIRPS2 dataset performed the best at annual, seasonal, and monthly timescales. The hydrologic simulation-based evaluation showed that SWAT's calibration results are sensitive to the rainfall dataset. The hydrologic response of the basin is found to be dominated by the subsurface processes, primarily by the groundwater flux. Overall, the study showed that both CHIRPS2 and IMERG6 products can be reliable rainfall data sources for hydrologic analysis of the Dhidhessa River Basin.


2021 ◽  
Vol 14 (3) ◽  
pp. 2299-2316
Author(s):  
Gizachew Kabite Wedajo ◽  
Misgana Kebede Muleta ◽  
Berhan Gessesse Awoke

Abstract. Precipitation is a crucial driver of hydrological processes. Ironically, a reliable characterization of its spatiotemporal variability is challenging. Ground-based rainfall measurement using rain gauges is more accurate. However, installing a dense gauging network to capture rainfall variability can be impractical. Satellite-based rainfall estimates (SREs) could be good alternatives, especially for data-scarce basins like in Ethiopia. However, SRE rainfall is plagued with uncertainties arising from many sources. The objective of this study was to evaluate the performance of the latest versions of several SRE products (i.e., CHIRPS2, IMERG6, TAMSAT3 and 3B42/3) for the Dhidhessa River Basin (DRB). Both statistical and hydrological modeling approaches were used for the performance evaluation. The Soil and Water Analysis Tool (SWAT) was used for hydrological simulations. The results showed that whereas all four SRE products are promising to estimate and detect rainfall for the DRB, the CHIRPS2 dataset performed the best at annual, seasonal and monthly timescales. The hydrological simulation-based evaluation showed that SWAT's calibration results are sensitive to the rainfall dataset. The hydrological response of the basin is found to be dominated by the subsurface processes, primarily by the groundwater flux. Overall, the study showed that both CHIRPS2 and IMERG6 products could be reliable rainfall data sources for the hydrological analysis of the DRB. Moreover, the climatic season in the DRB influences rainfall and streamflow estimation. Such information is important for rainfall estimation algorithm developers.


Author(s):  
Wei Hu ◽  
Nicholas Wilson ◽  
Gregory J. Hiemenz ◽  
Norman M. Wereley

A magnetorheological shock absorber (MRSA) system is designed and tested to integrate semi-active shock and vibration mitigating technology into the existing EFV (Expeditionary Fighting Vehicle) forward seating positions. Based on the operational requirements of the vehicle, the MRSA is designed so that it can not only isolate occupants from harmful whole body vibration (WBV) during normal operations but also reduce injury risk during extreme events such as a “rogue” wave or ballistic/UNDEX shock event. The MRSA consists of a piston with a circular flow-mode valve, a magnetorheological (MR) fluid cylinder, and a nitrogen accumulator. Piston motion forces MR fluids enclosed in the fluid cylinder to flow through the valve where it is activated by a magnetic field in the valve. Based on the Bingham-plastic constitutive relation and a steady state fluid motion model, the valve parameters are determined using a magnetic circuit analysis tool and are validated by electromagnetic finite element analysis (FEA). The high-speed field-off viscous force of the MRSA is predicted using computational fluid dynamic analysis. To experimentally evaluate the damping performance of the MRSA and validate the design, the MRSA is tested under single frequency sinusoidal displacement excitation on a material dynamic testing machine for low piston velocities (up to 0.9 m/s) performance evaluation. For performance evaluation at high piston velocities (up to 2.2 m/s), the MRSA is tested under impact loading on a rail-guided mass-drop test stand. Equivalent viscous damping is used to characterize the controllable damping behavior of the MRSA. To describe the time response of the MRSA, a dynamic model is developed based on geometrical parameters and MR fluid properties.


2021 ◽  
Vol 21 (5) ◽  
pp. 127
Author(s):  
Hui-Jie Han ◽  
Xiao-Ping Lu ◽  
Te Jiang ◽  
Chih-Hao Hsia ◽  
Ya-Zhou Yang ◽  
...  

Author(s):  
Melen McBride

Ethnogeriatrics is an evolving specialty in geriatric care that focuses on the health and aging issues in the context of culture for older adults from diverse ethnic backgrounds. This article is an introduction to ethnogeriatrics for healthcare professionals including speech-language pathologists (SLPs). This article focuses on significant factors that contributed to the development of ethnogeriatrics, definitions of some key concepts in ethnogeriatrics, introduces cohort analysis as a teaching and clinical tool, and presents applications for speech-language pathology with recommendations for use of cohort analysis in practice, teaching, and research activities.


2011 ◽  
Vol 21 (2) ◽  
pp. 44-54
Author(s):  
Kerry Callahan Mandulak

Spectral moment analysis (SMA) is an acoustic analysis tool that shows promise for enhancing our understanding of normal and disordered speech production. It can augment auditory-perceptual analysis used to investigate differences across speakers and groups and can provide unique information regarding specific aspects of the speech signal. The purpose of this paper is to illustrate the utility of SMA as a clinical measure for both clinical speech production assessment and research applications documenting speech outcome measurements. Although acoustic analysis has become more readily available and accessible, clinicians need training with, and exposure to, acoustic analysis methods in order to integrate them into traditional methods used to assess speech production.


Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document