scholarly journals Dilatometric study of the phase transformations under conditions of recrystallized and non-recrystallized austenite in 3Mn–1.5Al steel

Author(s):  
M. Morawiec ◽  
A. Grajcar ◽  
A. Kozłowska ◽  
W. Zalecki ◽  
W. Burian

AbstractThis work presents the results of prior austenite state on the phase transformation behavior in a medium manganese steel alloyed with Al. The austenite was plastically deformed at two different temperatures. The first was at 1050 °C to ensure its recrystallization before cooling. The second treatment included deformation at 900 °C to keep high dislocation density in the austenite. The analysis of recrystallization process or its lack on the phase transformation behavior was analyzed. The study included thermodynamic calculations to analyze proper conditions of selected heat treatments. The dilatometric analysis of the phase transitions dependence on deformation temperatures was carried out. Deformation continuous cooling transformation diagrams were formed on this basis. The metallographic investigations were performed to determine microstructure constituents after cooling. The investigation proved the presence of ferrite untransformed during the austenitization step at 1100 °C. The dominant phase was bainite which was kept present up to 100 °C s−1 cooling rate. The amount of martensite increased with increasing the cooling rate. For the non-recrystallized austenite, more bainite was present in the microstructure for higher cooling rates compared to the recrystallized one. This was the result of higher density of preferable places for bainite nucleation in the non-recrystallized austenite. The Vickers hardness measurements were conducted after the applied heat treatments. The hardness of steel increased together with applying the higher cooling rates, which corresponded to the higher martensite amount. These values were higher for the non-recrystallized austenite because of higher dislocation density.

2014 ◽  
Vol 556-562 ◽  
pp. 480-483
Author(s):  
Chen Zhang ◽  
Guang Xu ◽  
Zhang Wei Hu ◽  
Hai Lin Yang

The continuous cooling transformation (CCT) behavior of a Ti attached steel was studied through thermal simulation tests, and the influences of different cooling rates on the microstructure and transformation were investigated. The results show that the microstructure changes with the cooling rate, and the CCT curve of studied steel is plotted, which indicates that the solid-state phase transformation mainly consists of four regions. The CCT diagram made it possible to predict the microstructures of studied steel with different cooling rates.


2014 ◽  
Vol 804 ◽  
pp. 281-284
Author(s):  
Yuan She ◽  
Zhao Hui Zhang ◽  
Jian Tao Ju ◽  
Bo Jin

The continuous cooling phase transformation behavior of niobium microalloyed steel was studied by Thermecmastor-Z thermomechanical simulator; the continuous cooling transformation curves (CCT) were established. The change of microstructure under different cooling rates was observed, and the influence of deformation in austenite non-recrystallization region on transformation was discussed. Based on these work, it was possible to know that the phase transformation is retarded and the ferritic grain is refined dramatically as the cooling rate increasing. The deformation in austenite non-recrystallization region caused deformation stored-energy, which improved the grain refinement of transformation to some extent, but not significant.


2012 ◽  
Vol 472-475 ◽  
pp. 1183-1187
Author(s):  
Duan Jun Wang ◽  
Yu Hui Wang ◽  
Li Gang Liu ◽  
Wen Jun Liu ◽  
Xi Qing Zhao ◽  
...  

The SHCCT (simulated heat affected zone continuous cooling transformation) of 9Ni cryogenic steel were investigated. The microstructures observed in simulated heat affected zone (HAZ) continuous cooled specimens are composed of bainite (B) and martensite (M) depending on the cooling rates. The dimension of prior austensite grain, M-A constituent content, M-A dimension, M-A area density increase with increased the time of t8/5.


Sign in / Sign up

Export Citation Format

Share Document