scholarly journals A comparison of statistical relational learning and graph neural networks for aggregate graph queries

2021 ◽  
Author(s):  
Varun Embar ◽  
Sriram Srinivasan ◽  
Lise Getoor

AbstractStatistical relational learning (SRL) and graph neural networks (GNNs) are two powerful approaches for learning and inference over graphs. Typically, they are evaluated in terms of simple metrics such as accuracy over individual node labels. Complex aggregate graph queries (AGQ) involving multiple nodes, edges, and labels are common in the graph mining community and are used to estimate important network properties such as social cohesion and influence. While graph mining algorithms support AGQs, they typically do not take into account uncertainty, or when they do, make simplifying assumptions and do not build full probabilistic models. In this paper, we examine the performance of SRL and GNNs on AGQs over graphs with partially observed node labels. We show that, not surprisingly, inferring the unobserved node labels as a first step and then evaluating the queries on the fully observed graph can lead to sub-optimal estimates, and that a better approach is to compute these queries as an expectation under the joint distribution. We propose a sampling framework to tractably compute the expected values of AGQs. Motivated by the analysis of subgroup cohesion in social networks, we propose a suite of AGQs that estimate the community structure in graphs. In our empirical evaluation, we show that by estimating these queries as an expectation, SRL-based approaches yield up to a 50-fold reduction in average error when compared to existing GNN-based approaches.

2021 ◽  
Author(s):  
Sriram Srinivasan ◽  
Charles Dickens ◽  
Eriq Augustine ◽  
Golnoosh Farnadi ◽  
Lise Getoor

AbstractStatistical relational learning (SRL) frameworks are effective at defining probabilistic models over complex relational data. They often use weighted first-order logical rules where the weights of the rules govern probabilistic interactions and are usually learned from data. Existing weight learning approaches typically attempt to learn a set of weights that maximizes some function of data likelihood; however, this does not always translate to optimal performance on a desired domain metric, such as accuracy or F1 score. In this paper, we introduce a taxonomy of search-based weight learning approaches for SRL frameworks that directly optimize weights on a chosen domain performance metric. To effectively apply these search-based approaches, we introduce a novel projection, referred to as scaled space (SS), that is an accurate representation of the true weight space. We show that SS removes redundancies in the weight space and captures the semantic distance between the possible weight configurations. In order to improve the efficiency of search, we also introduce an approximation of SS which simplifies the process of sampling weight configurations. We demonstrate these approaches on two state-of-the-art SRL frameworks: Markov logic networks and probabilistic soft logic. We perform empirical evaluation on five real-world datasets and evaluate them each on two different metrics. We also compare them against four other weight learning approaches. Our experimental results show that our proposed search-based approaches outperform likelihood-based approaches and yield up to a 10% improvement across a variety of performance metrics. Further, we perform an extensive evaluation to measure the robustness of our approach to different initializations and hyperparameters. The results indicate that our approach is both accurate and robust.


Author(s):  
Ondrej Kuzelka ◽  
Jesse Davis ◽  
Steven Schockaert

The field of statistical relational learning (SRL) is concerned with learning probabilistic models from relational data. Learned SRL models are typically represented using some kind of weighted logical formulas, which makes them considerably more interpretable than those obtained by e.g. neural networks. In practice, however, these models are often still difficult to interpret correctly, as they can contain many formulas that interact in non-trivial ways and weights do not always have an intuitive meaning. To address this, we propose a new SRL method which uses possibilistic logic to encode relational models. Learned models are then essentially stratified classical theories, which explicitly encode what can be derived with a given level of certainty. Compared to Markov Logic Networks (MLNs), our method is faster and produces considerably more interpretable models.


2021 ◽  
Vol 40 (3) ◽  
pp. 1-13
Author(s):  
Lumin Yang ◽  
Jiajie Zhuang ◽  
Hongbo Fu ◽  
Xiangzhi Wei ◽  
Kun Zhou ◽  
...  

We introduce SketchGNN , a convolutional graph neural network for semantic segmentation and labeling of freehand vector sketches. We treat an input stroke-based sketch as a graph with nodes representing the sampled points along input strokes and edges encoding the stroke structure information. To predict the per-node labels, our SketchGNN uses graph convolution and a static-dynamic branching network architecture to extract the features at three levels, i.e., point-level, stroke-level, and sketch-level. SketchGNN significantly improves the accuracy of the state-of-the-art methods for semantic sketch segmentation (by 11.2% in the pixel-based metric and 18.2% in the component-based metric over a large-scale challenging SPG dataset) and has magnitudes fewer parameters than both image-based and sequence-based methods.


2020 ◽  
Vol 34 (04) ◽  
pp. 5077-5084
Author(s):  
Tengfei Ma ◽  
Patrick Ferber ◽  
Siyu Huo ◽  
Jie Chen ◽  
Michael Katz

Automated planning is one of the foundational areas of AI. Since no single planner can work well for all tasks and domains, portfolio-based techniques have become increasingly popular in recent years. In particular, deep learning emerges as a promising methodology for online planner selection. Owing to the recent development of structural graph representations of planning tasks, we propose a graph neural network (GNN) approach to selecting candidate planners. GNNs are advantageous over a straightforward alternative, the convolutional neural networks, in that they are invariant to node permutations and that they incorporate node labels for better inference.Additionally, for cost-optimal planning, we propose a two-stage adaptive scheduling method to further improve the likelihood that a given task is solved in time. The scheduler may switch at halftime to a different planner, conditioned on the observed performance of the first one. Experimental results validate the effectiveness of the proposed method against strong baselines, both deep learning and non-deep learning based.The code is available at https://github.com/matenure/GNN_planner.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hussain Hussain ◽  
Tomislav Duricic ◽  
Elisabeth Lex ◽  
Denis Helic ◽  
Roman Kern

AbstractGraph Neural Networks (GNNs) are effective in many applications. Still, there is a limited understanding of the effect of common graph structures on the learning process of GNNs. To fill this gap, we study the impact of community structure and homophily on the performance of GNNs in semi-supervised node classification on graphs. Our methodology consists of systematically manipulating the structure of eight datasets, and measuring the performance of GNNs on the original graphs and the change in performance in the presence and the absence of community structure and/or homophily. Our results show the major impact of both homophily and communities on the classification accuracy of GNNs, and provide insights on their interplay. In particular, by analyzing community structure and its correlation with node labels, we are able to make informed predictions on the suitability of GNNs for classification on a given graph. Using an information-theoretic metric for community-label correlation, we devise a guideline for model selection based on graph structure. With our work, we provide insights on the abilities of GNNs and the impact of common network phenomena on their performance. Our work improves model selection for node classification in semi-supervised settings.


Author(s):  
Sunil Nishad ◽  
Shubhangi Agarwal ◽  
Arnab Bhattacharya ◽  
Sayan Ranu

Majority of the existing graph neural networks(GNN) learn node embeddings that encode their local neighborhoods but not their positions. Consequently, two nodes that are vastly distant but located in similar local neighborhoods map to similar embeddings in those networks. This limitation prevents accurate performance in predictive tasks that rely on position information. In this paper, we develop GRAPHREACH , a position-aware inductive GNN that captures the global positions of nodes through reachability estimations with respect to a set of anchor nodes. The anchors are strategically selected so that reachability estimations across all the nodes are maximized. We show that this combinatorial anchor selection problem is NP-hard and, consequently, develop a greedy (1−1/e) approximation heuristic. Empirical evaluation against state-of-the-art GNN architectures reveal that GRAPHREACH provides up to 40% relative improvement in accuracy. In addition, it is more robust to adversarial attacks.


2020 ◽  
Author(s):  
Artur Schweidtmann ◽  
Jan Rittig ◽  
Andrea König ◽  
Martin Grohe ◽  
Alexander Mitsos ◽  
...  

<div>Prediction of combustion-related properties of (oxygenated) hydrocarbons is an important and challenging task for which quantitative structure-property relationship (QSPR) models are frequently employed. Recently, a machine learning method, graph neural networks (GNNs), has shown promising results for the prediction of structure-property relationships. GNNs utilize a graph representation of molecules, where atoms correspond to nodes and bonds to edges containing information about the molecular structure. More specifically, GNNs learn physico-chemical properties as a function of the molecular graph in a supervised learning setup using a backpropagation algorithm. This end-to-end learning approach eliminates the need for selection of molecular descriptors or structural groups, as it learns optimal fingerprints through graph convolutions and maps the fingerprints to the physico-chemical properties by deep learning. We develop GNN models for predicting three fuel ignition quality indicators, i.e., the derived cetane number (DCN), the research octane number (RON), and the motor octane number (MON), of oxygenated and non-oxygenated hydrocarbons. In light of limited experimental data in the order of hundreds, we propose a combination of multi-task learning, transfer learning, and ensemble learning. The results show competitive performance of the proposed GNN approach compared to state-of-the-art QSPR models making it a promising field for future research. The prediction tool is available via a web front-end at www.avt.rwth-aachen.de/gnn.</div>


2020 ◽  
Author(s):  
Zheng Lian ◽  
Jianhua Tao ◽  
Bin Liu ◽  
Jian Huang ◽  
Zhanlei Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document