Controls on crustal accretion along the back-arc East Scotia Ridge: constraints from bathymetry and gravity data

2013 ◽  
Vol 34 (1) ◽  
pp. 45-58 ◽  
Author(s):  
B. Nicholson ◽  
J. Georgen
2016 ◽  
Vol 5 (1) ◽  
pp. 21
Author(s):  
Indra Budi Prasetyawan

The origin and evolution of  back-arc spreading in the eastern edge of Scotia Plate will be discussed in this paper. The Scotia Plate is a tectonicplate on the edge of the South Atlantic and Southern Ocean, located between the South American and Antartic plates. The East Scotia Ridge (ESR) in the eastern edge of Scotia Plate, forned due to subduction of the South American plate beneath the South Sandwich plate along the South Sandwich Island arc. The methods and techniques of data acquisition used were data from absolution motions and data from magnetic anomalies and bathymetric data. Magnetic anomalies and  bathymetric data that used in this paper consist of two sets data. First, magnetic anomalies and  bathymetric data which were obtained by aboard HMS Endurance in the 1969-70 austral summer, and the second, magnetic anomalies and  bathymetric data which were obtained after removal of the International Geomagnetic Reference Field (IGRF). Absolution motion analyses in the subduction zones of Sandwich plate results that form back-arc spreading in East Scotia Ridge showing high deformation for slow moving upper plates. Where back-arc spreading is associated with upper plate retreat that reaches 26.9 mm/year and have back-arc deformation style consistent with upper plate absolute. Key Words: Geological oceanography, Scotia plate, back-arc spreading


2020 ◽  
Author(s):  
Florian Schmid ◽  
Heidrun Kopp ◽  
Michael Schnabel ◽  
Anke Dannowski ◽  
Ingo Heyde ◽  
...  

<p>The northeastern Lau Basin is one of the fastest opening and magmatically most active back-arc regions on Earth. Although the current pattern of plate boundaries and motions in this complex mosaic of microplates is fairly well understood, the structure and evolution of the back-arc crust are not. We present refraction seismic, multichannel seismic and gravity data from a 300 km long east-west oriented transect crossing the Niuafo’ou Microplate (back-arc), the Fonualei Rift and Spreading Centre (FRSC) and the Tofua Volcanic Arc at 17°20’S. Our P wave tomography model shows strong lateral variations in the thickness and velocity-depth distribution of the crust. The thinnest crust is present in the Fonualei Rift and Spreading Center, suggesting active seafloor spreading there. In the much thicker crust of the volcanic arc we identify a region of anomalously low velocities, indicative of partial melts. Surprisingly, the melt reservoir is located at ~17 km distance to the volcanic front, supporting the hypothesis that melts are deviated from the volcanic arc towards the FRSC in sub-crustal domains. We identify two distinct regions in the back-arc crust, representing different opening phases of the northeastern Lau Basin. During initial extension, likely dominated by rifting, crust of generally lower upper-crustal velocities formed. During an advanced opening phase, likely dominated by seafloor spreading, crust of higher upper-crustal velocities formed and is now up to 11 km thick. This thickening is the result of magmatic underplating, which is supported by elevated upper mantle temperatures in this region.</p>


2000 ◽  
Vol 41 (6) ◽  
pp. 845-866 ◽  
Author(s):  
P. T. LEAT ◽  
R. A. LIVERMORE ◽  
I. L. MILLAR ◽  
J. A. PEARCE
Keyword(s):  

2021 ◽  
pp. 105470
Author(s):  
Paolo Mancinelli ◽  
Vittorio Scisciani ◽  
Cristina Pauselli ◽  
Gérard M. Stampfli ◽  
Fabio Speranza ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document