Thermal structure of the crust in the Black Sea: comparative analysis of magnetic and heat flow data

2014 ◽  
Vol 35 (4) ◽  
pp. 345-359 ◽  
Author(s):  
V. I. Starostenko ◽  
M. N. Dolmaz ◽  
R. I. Kutas ◽  
O. M. Rusakov ◽  
E. Oksum ◽  
...  
2018 ◽  
Vol 3 (4) ◽  
pp. 14-28 ◽  
Author(s):  
I. P. Bondarev

The name Flexopecten glaber ponticus (Bucquoy, Dautzenberg & Dollfus, 1889) is generally used for the only Pectinidae representative inhabiting the Black Sea. It is registered in the Red Book of the Republic of Crimea as endemic subspecies reducing in amount. F. glaber ponticus is listed in WoRMS MolluscaBase as the only accepted subspecies of Flexopecten glaber (Linnaeus, 1758). In the past its taxonomic status has been changed from a geographic variety to valid species. The purpose of this study is to establish its correct taxonomic status. The study is based on a comparative analysis of conchological features of Flexopecten glaber and F. glaber ponticus in relation with the brief natural history of population in the Black Sea. Sampling was performed by snorkel equipment in Kazach’ya Bay (Black Sea, Crimea, Sevastopol) at 2–6 m depths. A total of 100 scallop specimens were sampled in September 2017. To assure a better understanding in a broader context those results are compared with the previously published morphological data based on the analysis of a large amount of material from the Black Sea and the Mediterranean Sea – Marmara Sea regions. Comparative analysis of conchological features of F. glaber ponticus from the Black Sea with F. glaber from the Mediterranean region has not revealed any distinct differences between them. Thus, there are no evidenced data for the diagnosis of F. glaber ponticus as a subspecies. Species F. glaber appeared in the Black Sea not earlier than 7,000 years ago and formed a well developed population less than 3,000 years ago. We have to conclude that the specified divergence period is not long enough to form a subspecies. As a result of the present survey the subspecific status of F. glaber ponticus is not retained and the name is placed in synonymy of the parent species Flexopecten glaber.


2021 ◽  
Vol 17 (1) ◽  
pp. 134-140
Author(s):  
Ioan MOLDOVAN ◽  
Dan Marian UNGUREANU

Abstract: This paper aims to provide an overview how to employ marine mammals in naval operations and also to identify possibilities of involving mammals in support of the Romanian Naval Forces. The article uses domain observation and comparative analysis of how to employ marine mammals in the actions of modern fleets. For this purpose, we set out to identify the possibilities of using mammals for military scopes. Also, we will provide historical aspects of involving mammals in military activities in the Black Sea. In addition, we will offer relevant implications and perspectives regarding the use of marine mammals by the Romanian Naval Forces. The novelty of this article comes from the motivation to bring to the attention of Romanian Naval Forces the approach of employing mammals and developing research in the underwater domain based on training marine mammals. The present article is addressed especially to the master students and the personnel of the Naval Forces, and also to those who contribute to the implementation of feasible ideas at the level of the Romanian Naval Forces and intend to develop the underwater domain in order to discourage actions of a potential adversary


2019 ◽  
Vol 219 (3) ◽  
pp. 1648-1659 ◽  
Author(s):  
B Mather ◽  
L Moresi ◽  
P Rayner

SUMMARY The variation of temperature in the crust is difficult to quantify due to the sparsity of surface heat flow observations and lack of measurements on the thermal properties of rocks at depth. We examine the degree to which the thermal structure of the crust can be constrained from the Curie depth and surface heat flow data in Southeastern Australia. We cast the inverse problem of heat conduction within a Bayesian framework and derive its adjoint so that we can efficiently find the optimal model that best reproduces the data and prior information on the thermal properties of the crust. Efficiency gains obtained from the adjoint method facilitate a detailed exploration of thermal structure in SE Australia, where we predict high temperatures within Precambrian rocks of 650 °C due to relatively high rates of heat production (0.9–1.4 μW m−3). In contrast, temperatures within dominantly Phanerozoic crust reach only 520 °C at the Moho due to the low rates of heat production in Cambrian mafic volcanics. A combination of the Curie depth and heat flow data is required to constrain the uncertainty of lower crustal temperatures to ±73 °C. We also show that parts of the crust are unconstrained if either data set is omitted from the inversion.


1992 ◽  
Vol 210 (3-4) ◽  
pp. 273-293 ◽  
Author(s):  
A.Ya Golmshtok ◽  
L.P Zonenshain ◽  
A.A Terekhov ◽  
R.V Shainurov

2020 ◽  
Author(s):  
Sheona Masterton ◽  
Samuel Cheyney ◽  
Chris Green ◽  
Peter Webb

<p>Temperature and heat flow are key parameters for understanding the potential for source rock maturation in sedimentary basins. Knowledge of the thermal structure of the lithosphere in both a regional and local context can provide important constraints for modelling basin evolution through time.</p><p>In recent years, global coverage of heat flow data constraints have enhanced scientific understanding of the thermal state of the lithosphere. However, sample bias and variability in sampling methods continues to be a major obstacle to heat flow-derived isotherm prediction, particularly in frontier areas where data are often sparse or poorly constrained. Consideration and integration of alternative approaches to predict temperature at depth may allow interpolation of surface heat flow in such data poor areas.   </p><p>We have attempted to integrate three independent approaches to modelling temperature with depth. The first approach is based on heat flow observations, in which a 1D steady-state model of the lithosphere is constructed from quality-assessed surface heat flow data, crustal thickness estimates and associated lithospheric thermal properties. The second approach is based on terrestrial (airborne, ground and shipborne) magnetic data, in which the maximum depth of magnetisation within the lithosphere is estimated using a de-fractal method and used as a proxy for Curie temperature depth. The third approach is based on satellite magnetic data and estimates the thickness of the magnetic layer within the lithosphere based on the varying amplitudes of satellite magnetic data, accounting for global variations in crustal magnetisation. Curie temperature depth results from each of these approaches have been integrated into a single global grid, then used to calculate temperature-depth variations through the crust.</p><p>We have evaluated our isotherm predictions by comparing them with temperature-depth control points and undertook qualitative and quantitative analyses of discrepancies that exist between different modelling approaches; this has provided insights into the origin of such discrepancies that can be integrated into our models to generate a better controlled global temperature-depth result.  </p><p>We present details of our methodology and the results of our integrated studies. We demonstrate areas where the independent results are in good agreement, providing vital information for high-level basin screening. We also highlight areas of disagreement and suggest possible causes for these discrepancies and potential resolutions.</p>


Sign in / Sign up

Export Citation Format

Share Document