Influence of Partial Filling of the Gaps with Compressible Liquid on the Contact of Elastic Bodies with Wavy Surfaces

2020 ◽  
Vol 56 (3) ◽  
pp. 310-318
Author(s):  
О. P. Kozachok
2018 ◽  
Vol 24 (11) ◽  
pp. 3381-3393 ◽  
Author(s):  
Oleh Kozachok ◽  
Rostyslav Martynyak

This paper presents a study on smooth elastic contact between two semi-infinite elastic bodies, one of which has a wavy surface, for the case when there are an incompressible liquid, not wetting the surfaces of the bodies, at the central region of each interface gap and a gas under constant pressure at the edges of each gap. Due to the surface tension of the liquid, a pressure drop occurs in the liquid and the gas, which is described by the Laplace formula. The formulated contact problem is reduced to a singular integral equation (SIE) with the Hilbert kernel, which is transformed into a SIE with the Cauchy kernel for a derivative of a height of the gaps. A system of transcendental equations for a width of each gap and a width of the gap region filled with the liquid is obtained from the condition of boundedness of the contact stresses at the gap ends and the condition of liquid amount conservation. It is solved numerically, and the dependences of the width and shape of the gaps, the width of the gap regions filled with the liquid and the contact approach of the bodies on the applied load and the surface tension of the liquid are analyzed.


Author(s):  
Oleg Kozachok

The non-frictional contact between two semi-infinite elastic bodies, one of which has a wavy surface, is considered for the case of interface gaps filled with a compressible barotropic liquid. The contact problem formulated is reduced to a singular integral equation (SIE) with the Hilbert kernel, which is transformed into a SIE with the Cauchy kernel for a derivative of a height of the gaps. A system of transcendental equations for a width of the gaps and a pressure of the liquid is obtained from the condition of boundedness of the SIE solution at the integration interval ends and the equation of state of a compressible barotropic liquid, and then it is solved numerically. The dependences of the width and shape of the gaps, the pressure of the liquid, the average normal displacement and contact compliance of the bodies on the applied load and bulk modulus of the liquid are analyzed.


1973 ◽  
Vol 3 (2) ◽  
pp. 109-115 ◽  
Author(s):  
J. Dundurs ◽  
K. C. Tsai ◽  
L. M. Keer
Keyword(s):  

1989 ◽  
Vol 25 (5) ◽  
pp. 448-454 ◽  
Author(s):  
N. Kh. Arutyunyan ◽  
A. D. Drozdov
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1359
Author(s):  
Marin Marin ◽  
Dumitru Băleanu ◽  
Sorin Vlase

The formalism of multibody systems offers a means of computer-assisted algorithmic analysis and a means of simulating and optimizing an arbitrary movement of a possible high number of elastic bodies in the connection [...]


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ammar Ali Abd ◽  
Samah Zaki Naji ◽  
Ching Thian Tye ◽  
Mohd Roslee Othman

Abstract Liquefied petroleum gas (LPG) plays a major role in worldwide energy consumption as a clean source of energy with low greenhouse gases emission. LPG transportation is exhibited through networks of pipelines, maritime, and tracks. LPG transmission using pipeline is environmentally friendly owing to the low greenhouse gases emission and low energy requirements. This work is a comprehensive evaluation of transportation petroleum gas in liquid state and compressible liquid state concerning LPG density, temperature and pressure, flow velocity, and pump energy consumption under the impact of different ambient temperatures. Inevitably, the pipeline surface exchanges heat between LPG and surrounding soil owing to the temperature difference and change in elevation. To prevent phase change, it is important to pay attention for several parameters such as ambient temperature, thermal conductivity of pipeline materials, soil type, and change in elevation for safe, reliable, and economic transportation. Transporting LPG at high pressure requests smaller pipeline size and consumes less energy for pumps due to its higher density. Also, LPG transportation under moderate or low pressure is more likely exposed to phase change, thus more thermal insulation and pressure boosting stations required to maintain the phase envelope. The models developed in this work aim to advance the existing knowledge and serve as a guide for efficient design by underling the importance of the mentioned parameters.


Sign in / Sign up

Export Citation Format

Share Document