interface gaps
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Marios Patinios ◽  
Irvin L. Ong ◽  
James A. Scobie ◽  
Gary D. Lock ◽  
Carl M. Sangan

One of the most important problems facing gas turbine designers today is the ingestion of hot mainstream gases into the wheel-space between the turbine disk (rotor) and its adjacent casing (stator). A rim seal is fitted at the periphery and a superposed sealant flow—typically fed through the bore of the stator—is used to prevent ingress. The majority of research studies investigating ingress do so in the absence of any leakage paths that exist throughout the engine's architecture. These inevitable pathways are found between the mating interfaces of adjacent pieces of hardware. In an environment where the turbine is subjected to aggressive thermal and centrifugal loading, these interface gaps can be difficult to predict and the resulting leakage flows which pass through them even harder to account for. This paper describes experimental results from a research facility which experimentally models hot gas ingestion into the wheel-space of an axial turbine stage. The facility was specifically designed to incorporate leakage flows through the stator disk; leakage flows were introduced axially through the stator shroud or directly underneath the vane carrier ring. Measurements of CO2 gas concentration, static pressure, and total pressure were used to examine the wheel-space flow structure with and without ingress from the mainstream gas-path. Data are presented for a simple axial-clearance rim-seal. The results support two distinct flow-structures, which are shown to be dependent on the mass-flow ratio of bore and leakage flows. Once the leakage flow was increased above a certain threshold, the flow structure is shown to transition from a classical Batchelor-type rotor-stator system to a vortex-dominated structure. The existence of a toroidal vortex immediately inboard of the outer rim-seal is shown to encourage ingestion.


2018 ◽  
Vol 24 (11) ◽  
pp. 3381-3393 ◽  
Author(s):  
Oleh Kozachok ◽  
Rostyslav Martynyak

This paper presents a study on smooth elastic contact between two semi-infinite elastic bodies, one of which has a wavy surface, for the case when there are an incompressible liquid, not wetting the surfaces of the bodies, at the central region of each interface gap and a gas under constant pressure at the edges of each gap. Due to the surface tension of the liquid, a pressure drop occurs in the liquid and the gas, which is described by the Laplace formula. The formulated contact problem is reduced to a singular integral equation (SIE) with the Hilbert kernel, which is transformed into a SIE with the Cauchy kernel for a derivative of a height of the gaps. A system of transcendental equations for a width of each gap and a width of the gap region filled with the liquid is obtained from the condition of boundedness of the contact stresses at the gap ends and the condition of liquid amount conservation. It is solved numerically, and the dependences of the width and shape of the gaps, the width of the gap regions filled with the liquid and the contact approach of the bodies on the applied load and the surface tension of the liquid are analyzed.


Author(s):  
Marios Patinios ◽  
Irvin L. Ong ◽  
James A. Scobie ◽  
Gary D. Lock ◽  
Carl M. Sangan

One of the most important problems facing gas turbine designers today is the ingestion of hot mainstream gases into the wheel-space between the turbine disc (rotor) and its adjacent casing (stator). A rim seal is fitted at the periphery and a superposed sealant flow — typically fed through the bore of the stator — is used to prevent ingress. The majority of research studies investigating ingress do so in the absence of any leakage paths that exist throughout the engine’s architecture. These inevitable pathways are found between the mating interfaces of adjacent pieces of hardware. In an environment where the turbine is subjected to aggressive thermal and centrifugal loading these interface gaps can be difficult to predict and the resulting leakage flows which pass through them even harder to account for. This paper describes experimental results from a research facility which experimentally models hot gas ingestion into the wheel-space of an axial turbine stage. The facility was specifically designed to incorporate leakage flows through the stator disc; leakage flows were introduced axially through the stator shroud or directly underneath the vane carrier ring. Measurements of CO2 gas concentration, static pressure and total pressure were used to examine the wheel-space flow structure with and without ingress from the mainstream gas-path. Data is presented for a simple axial-clearance rim-seal. The results support two distinct flow-structures, which are shown to be dependent on the mass-flow ratio of bore and leakage flows. Once the leakage flow was increased above a certain threshold, the flow structure is shown to transition from a classical Batchelor-type rotor-stator system to a vortex-dominated structure. The existence of a toroidal vortex immediately inboard of the outer rim-seal is shown to encourage ingestion.


Author(s):  
Oleg Kozachok

The non-frictional contact between two semi-infinite elastic bodies, one of which has a wavy surface, is considered for the case of interface gaps filled with a compressible barotropic liquid. The contact problem formulated is reduced to a singular integral equation (SIE) with the Hilbert kernel, which is transformed into a SIE with the Cauchy kernel for a derivative of a height of the gaps. A system of transcendental equations for a width of the gaps and a pressure of the liquid is obtained from the condition of boundedness of the SIE solution at the integration interval ends and the equation of state of a compressible barotropic liquid, and then it is solved numerically. The dependences of the width and shape of the gaps, the pressure of the liquid, the average normal displacement and contact compliance of the bodies on the applied load and bulk modulus of the liquid are analyzed.


2017 ◽  
Vol 23 (10) ◽  
pp. 1389-1406 ◽  
Author(s):  
Kostyantyn Chumak

This paper presents a study on the thermoelastic contact between a wavy surface and a flat surface in the presence of a heat-conducting interstitial medium in interface gaps. The influence of applied mechanical and thermal loads on the deformation of the gaps is taken into account. The contact problem is reduced to a system of singular integro-differential equations for a temperature jump across the gaps and the height of the gaps. Solutions are obtained for the cases of thermoinsulated and heat-conducting gaps. It is shown that, in contrast to the thermoinsulated gap model, the use of the heat-conducting gap model makes it possible to construct a physically correct solution of the contact problem. It is revealed that the wavy interface with heat-conducting gaps exhibits thermal rectification. The effects of the medium’s thermal conductivity, the pressure and heat flow magnitudes and the waviness amplitude on the effective thermal contact resistance and the level of thermal rectification are analysed.


Author(s):  
Oleg Kozachok

The frictionless contact between an elastic body and a rigid base in the presence of a periodically arranged quasielliptic grooves with in interface gaps in the presence of a compressible liquid is modeled. The contact problem formulated for the elastic half-space is reduced to a singular integral equation (SIE) with Hilbert kernel for a derivative of a height of the interface gaps, which is transformed to a SIE with Cauchy kernel that is solved analytically, and a transcendental equation for liquid’s pressure, which has been obtained from the equation of compressible barotropic liquid state. The dependences of the pressure of the liquid, shape of the gaps, average normal displacement and contact compliance of the bodies on the applied load and bulk modulus of the liquid are analysed.


2016 ◽  
Vol 51 (6) ◽  
pp. 804-813 ◽  
Author(s):  
O. P. Kozachok ◽  
B. S. Slobodyan ◽  
R. M. Martynyak

Sign in / Sign up

Export Citation Format

Share Document