Informational foundations of quantum theory: critical reconsideration from the point of view of a phenomenologist

Author(s):  
Tina Bilban
Nature ◽  
1931 ◽  
Vol 127 (3210) ◽  
pp. 706-706 ◽  
Author(s):  
G. LEMAÎTRE

Author(s):  
Jean Vignon Hounguevou ◽  
Daniel Sabi Takou ◽  
Gabriel Y. H. Avossevou

In this paper, we study coherent states for a quantum Pauli model through supersymmetric quantum mechanics (SUSYQM) method. From the point of view of canonical quantization, the construction of these coherent states is based on the very important differential operators in SUSYQM call factorization operators. The connection between classical and quantum theory is given by using the geometric properties of these states.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 163
Author(s):  
Karl Hess

This review is related to the Einstein-Bohr debate and to Einstein–Podolsky–Rosen’s (EPR) and Bohm’s (EPRB) Gedanken-experiments as well as their realization in actual experiments. I examine a significant number of papers, from my minority point of view and conclude that the well-known theorems of Bell and Clauser, Horne, Shimony and Holt (CHSH) deal with mathematical abstractions that have only a tenuous relation to quantum theory and the actual EPRB experiments. It is also shown that, therefore, Bell-CHSH cannot be used to assess the nature of quantum entanglement, nor can physical features of entanglement be used to prove Bell-CHSH. Their proofs are, among other factors, based on a statistical sampling argument that is invalid for general physical entities and processes and only applicable for finite “populations”; not for elements of physical reality that are linked, for example, to a time-like continuum. Bell-CHSH have, furthermore, neglected the subtleties of the theorem of Vorob’ev that includes their theorems as special cases. Vorob’ev found that certain combinatorial-topological cyclicities of classical random variables form a necessary and sufficient condition for the constraints that are now known as Bell-CHSH inequalities. These constraints, however, must not be linked to the observables of quantum theory nor to the actual EPRB experiments for a variety of reasons, including the existence of continuum-related variables and appropriate considerations of symmetry.


Author(s):  
José G. Perillán

The universe is made of stories, not of atoms.1 —MURIEL RUKEYSER Graduate work in both physics and history taught me to use highly specialized research methods to rigorously search out truth and eradicate myths. In spring 2012, I brought this mindset with me as I sat down for lunch with physicist Pierre Hohenberg at the Apple Restaurant near Manhattan’s Washington Square Park. Pierre was a brilliant physicist and a family friend. Toward the end of his life, he was particularly invested in work on the foundations of quantum theory....


The interaction representation has recently been introduced into the quantum theory of fields by Tomonaga and Schwinger. Applications of the theory to interacting meson-photon fields have led to apparent difficulties in determining invariant interaction Hamiltonians. Another troublesome feature is the necessity of verifying the integrability conditions of the so-called generalized Schrödinger equation. In the present paper the theory of the interaction representation is presented from a different point of view. It is shown that if two field operators with the same transformation character satisfy two different field equations, there is a unique unitary transformation connecting the field variables on any space-like surface given such a correspondence on one given space-like surface. A differential equation for determining this unique unitary transformation is found which is the analogue of Tomonaga’s generalized Schrödinger equation. This gives directly and simply an invariant interaction Hamiltonian and renders unnecessary the explicit verification of the integrability of the Schrödinger equation, since this is known to have a unique solution. To illustrate the simplification introduced by the present theory, the interaction Hamiltonian for the interacting scalar meson-photon fields is calculated. The result is the same as that obtained by Kanesawa & Tomonaga, but it is obtained by a straightforward calculation without the need to add terms to make the Hamiltonian an invariant.


Sign in / Sign up

Export Citation Format

Share Document