scholarly journals Understanding the role of key amino acids in regulation of proline dehydrogenase/proline oxidase (prodh/pox)-dependent apoptosis/autophagy as an approach to targeted cancer therapy

2020 ◽  
Vol 466 (1-2) ◽  
pp. 35-44 ◽  
Author(s):  
Thi Yen Ly Huynh ◽  
Ilona Zareba ◽  
Weronika Baszanowska ◽  
Sylwia Lewoniewska ◽  
Jerzy Palka
Author(s):  
Shi-Yong Sun

Abstract The mammalian target of rapamycin (mTOR) critically regulates several essential biological functions, such as cell growth, metabolism, survival, and immune response by forming two important complexes, namely, mTOR complex 1 (mTORC1) and complex 2 (mTORC2). mTOR signaling is often dysregulated in cancers and has been considered an attractive cancer therapeutic target. Great efforts have been made to develop efficacious mTOR inhibitors, particularly mTOR kinase inhibitors, which suppress mTORC1 and mTORC2; however, major success has not been achieved. With the strong scientific rationale, the intriguing question is why cancers are insensitive or not responsive to mTOR-targeted cancer therapy in clinics. Beyond early findings on induced activation of PI3K/Akt, MEK/ERK, and Mnk/eIF4E survival signaling pathways that compromise the efficacy of rapalog-based cancer therapy, recent findings on the essential role of GSK3 in mediating cancer cell response to mTOR inhibitors and mTORC1 inhibition-induced upregulation of PD-L1 in cancer cells may provide some explanations. These new findings may also offer us the opportunity to rationally utilize mTOR inhibitors in cancer therapy. Further elucidation of the biology of complicated mTOR networks may bring us the hope to develop effective therapeutic strategies with mTOR inhibitors against cancer.


2011 ◽  
Vol 8 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Jan Marik ◽  
Jagath R. Junutula

Author(s):  
Lu Zhang ◽  
Fei Wang ◽  
Huijun Yi ◽  
Svetlana P. Ermakova ◽  
Olesya S. Malyarenko ◽  
...  

1981 ◽  
Vol 31 (1) ◽  
pp. 189-193 ◽  
Author(s):  
Mohamed A. Ashy ◽  
Abd El-Galil ◽  
M. Khalil ◽  
Abou-Zeid A. Abou-Zeid
Keyword(s):  

2020 ◽  
Vol 27 (9) ◽  
pp. 923-929
Author(s):  
Gaurav Pandey ◽  
Prem Prakash Das ◽  
Vibin Ramakrishnan

Background: RADA-4 (Ac-RADARADARADARADA-NH2) is the most extensively studied and marketed self-assembling peptide, forming hydrogel, used to create defined threedimensional microenvironments for cell culture applications. Objectives: In this work, we use various biophysical techniques to investigate the length dependency of RADA aggregation and assembly. Methods: We synthesized a series of RADA-N peptides, N ranging from 1 to 4, resulting in four peptides having 4, 8, 12, and 16 amino acids in their sequence. Through a combination of various biophysical methods including thioflavin T fluorescence assay, static right angle light scattering assay, Dynamic Light Scattering (DLS), electron microscopy, CD, and IR spectroscopy, we have examined the role of chain-length on the self-assembly of RADA peptide. Results: Our observations show that the aggregation of ionic, charge-complementary RADA motifcontaining peptides is length-dependent, with N less than 3 are not forming spontaneous selfassemblies. Conclusion: The six biophysical experiments discussed in this paper validate the significance of chain-length on the epitaxial growth of RADA peptide self-assembly.


2015 ◽  
Vol 22 (11) ◽  
pp. 1335-1347 ◽  
Author(s):  
Yan Gao ◽  
Jacson Shen ◽  
Lara Milane ◽  
Francis Hornicek ◽  
Mansoor Amiji ◽  
...  

2014 ◽  
Vol 20 (32) ◽  
pp. 5218-5244 ◽  
Author(s):  
A. Aerts ◽  
N.R.E.N. Impens ◽  
M. Gijs ◽  
M. D'Huyvetter ◽  
H. Vanmarcke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document