Directive Effect of Chain Length in Modulating Peptide Nano-assemblies

2020 ◽  
Vol 27 (9) ◽  
pp. 923-929
Author(s):  
Gaurav Pandey ◽  
Prem Prakash Das ◽  
Vibin Ramakrishnan

Background: RADA-4 (Ac-RADARADARADARADA-NH2) is the most extensively studied and marketed self-assembling peptide, forming hydrogel, used to create defined threedimensional microenvironments for cell culture applications. Objectives: In this work, we use various biophysical techniques to investigate the length dependency of RADA aggregation and assembly. Methods: We synthesized a series of RADA-N peptides, N ranging from 1 to 4, resulting in four peptides having 4, 8, 12, and 16 amino acids in their sequence. Through a combination of various biophysical methods including thioflavin T fluorescence assay, static right angle light scattering assay, Dynamic Light Scattering (DLS), electron microscopy, CD, and IR spectroscopy, we have examined the role of chain-length on the self-assembly of RADA peptide. Results: Our observations show that the aggregation of ionic, charge-complementary RADA motifcontaining peptides is length-dependent, with N less than 3 are not forming spontaneous selfassemblies. Conclusion: The six biophysical experiments discussed in this paper validate the significance of chain-length on the epitaxial growth of RADA peptide self-assembly.

2021 ◽  
Author(s):  
Bharti Koshti ◽  
Ramesh Singh ◽  
Vivekshinh Kshtriya ◽  
Shanka Walia ◽  
Dhiraj Bhatia ◽  
...  

<p>.<br></p><p>The self-assembly of single amino acids is very important topic of research since there are plethora of diseases like phenylketonuria, tyrosinemia, hypertryptophanemia, hyperglycinemia, cystinuria and maple syrup urine disease to name a few which are caused by the accumulation or excess of amino acids. These are in-born errors of metabolisms (IEM’s) which are caused due to the deficiency of enzymes involved in catabolic pathways of these enzymes. Hence, it is very pertinent to understand the fate of these excess amino acids in the body and their self-assembling behaviour at molecular level. From the previous literature reports it may be surmised that the single amino acids like Phenylalanine, Tyrosine, Tryptophan, Cysteine and Methionine assemble to amyloid like structures, and hence have important implications in the pathophysiology of IEM’s like phenylketonuria, tyrosinemia, hypertryptophanemia, cystinuria and hypermethioninemia respectively. In this manuscript we report the self-assembly of lysine hydrocholride to fiber like structures in deionized water. It could be observed that lysine assemble to globular structures in fresh condition and then gradually changes to fiber like morphologies by self-association over time after 24 hours. These fibers gradually change to tubular morphologies after 3 day followed by fractal irregular morphologies in 10 and 15 days respectively. Notably, lysine exists as positively charged amino acid at physiological pH and the amine groups in lysine remain protonated. Hence, the self-assembling properties of lysine hydrochloride in deionized water is also pertinent and give insights into the fate of this amino acid in body in case it remains unmetabolized. Further, MTT assays were done to analyse the toxicities of these aggregates and the assay suggest their cytotoxic nature on SHSY5Y neural cell lines. Hence, the aggregation of lysine may be attributed to the pathological symptoms caused in diseases like hyperlysinemia which is associated with the neurological problems like seizures and short-term memory as observed in case of amyloid diseases like Parkinson’s and Alzheimer’s to name a few.</p>


2021 ◽  
Author(s):  
Bharti Koshti ◽  
Ramesh Singh ◽  
Vivekshinh Kshtriya ◽  
Shanka Walia ◽  
Dhiraj Bhatia ◽  
...  

<p>.<br></p><p>The self-assembly of single amino acids is very important topic of research since there are plethora of diseases like phenylketonuria, tyrosinemia, hypertryptophanemia, hyperglycinemia, cystinuria and maple syrup urine disease to name a few which are caused by the accumulation or excess of amino acids. These are in-born errors of metabolisms (IEM’s) which are caused due to the deficiency of enzymes involved in catabolic pathways of these enzymes. Hence, it is very pertinent to understand the fate of these excess amino acids in the body and their self-assembling behaviour at molecular level. From the previous literature reports it may be surmised that the single amino acids like Phenylalanine, Tyrosine, Tryptophan, Cysteine and Methionine assemble to amyloid like structures, and hence have important implications in the pathophysiology of IEM’s like phenylketonuria, tyrosinemia, hypertryptophanemia, cystinuria and hypermethioninemia respectively. In this manuscript we report the self-assembly of lysine hydrocholride to fiber like structures in deionized water. It could be observed that lysine assemble to globular structures in fresh condition and then gradually changes to fiber like morphologies by self-association over time after 24 hours. These fibers gradually change to tubular morphologies after 3 day followed by fractal irregular morphologies in 10 and 15 days respectively. Notably, lysine exists as positively charged amino acid at physiological pH and the amine groups in lysine remain protonated. Hence, the self-assembling properties of lysine hydrochloride in deionized water is also pertinent and give insights into the fate of this amino acid in body in case it remains unmetabolized. Further, MTT assays were done to analyse the toxicities of these aggregates and the assay suggest their cytotoxic nature on SHSY5Y neural cell lines. Hence, the aggregation of lysine may be attributed to the pathological symptoms caused in diseases like hyperlysinemia which is associated with the neurological problems like seizures and short-term memory as observed in case of amyloid diseases like Parkinson’s and Alzheimer’s to name a few.</p>


Soft Matter ◽  
2018 ◽  
Vol 14 (30) ◽  
pp. 6320-6326 ◽  
Author(s):  
Edward D. H. Mansfield ◽  
Matthias Hartlieb ◽  
Sylvain Catrouillet ◽  
Julia Y. Rho ◽  
Sophie C. Larnaudie ◽  
...  

Self-assembling cyclic peptides (CP) consisting of amino acids with alternating d- and l-chirality form nanotubes by hydrogen bonding, hydrophobic interactions, and π–π stacking in solution.


2019 ◽  
Author(s):  
Deepika Mathur ◽  
Harpreet Kaur ◽  
Anjali Dhall ◽  
Neelam Sharma ◽  
Gajendra P. S. Raghava

AbstractBackgroundNanostructures generated by self-assembly of peptides yield nanomaterial that has many therapeutic applications, including drug delivery and biomedical engineering, due to their low cytotoxicity and higher uptake by targeted cells owing to their high affinity and specificity towards cell surface receptors. Despite the promising implications of this rapidly expanding field, there is no dedicated resource to study peptide nanostructures.ResultThis study endeavours to create a dedicated repository of short peptides, which may prove to be the best models to study ordered nanostructures formed by peptide self-assembly. SAPdb has a repertoire of 1,049 entries of experimentally validated nanostructures formed by the self-assembling of small peptides. It includes 701 entries are of dipeptides, 328 entries belong to tripeptides, and 20 entries of single amino acid with some conjugated partners. Each entry encompasses comprehensive information about the peptide such as chemical modifications in the peptide sequences, the type of nanostructure formed, and experimental conditions like pH, temperature, and solvent required for the self-assembly of the peptide, etc. Further, our analysis has shown that the occurrence of aromatic amino acids favours the formation of self-assembling nanostructures, as indicated by a large number of entries in SAPdb contain aromatics amino acids. Besides, we have observed that these peptides form different nanostructures under different experimental conditions. SAPdb provides this comprehensive information in a hassle-free tabulated manner at a glance. User-friendly browsing, searching, and analysis modules are integrated for easy retrieval and comparison of data and examination of properties. We anticipate SAPdb to be a valuable repository for researchers engaged in the burgeoning arena of nanobiotechnology.AvailabilityThe database can be accessed on the web at https://webs.iiitd.edu.in/raghava/sapdb.


2007 ◽  
Vol 1057 ◽  
Author(s):  
Grigory Tikhomirov ◽  
Hicham Fenniri

ABSTRACTThe self-assembly of six self-complimentary Guanine – Cytosine hybrid heterocycles bearing hydrophobic substituents has been studied using combinatorial approach in eight solvents under different conditions. The parameters that were varied include: the structure of the self-assembling module, its concentration, the solvent, temperature, and time of self-assembly. scanning electron microscopy (SEM) was used as a screening tool. A wide variety of interesting morphologies was found. The most interesting structures were studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and X-ray powder diffraction (XRD).


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Corinna Fetsch ◽  
Jens Gaitzsch ◽  
Lea Messager ◽  
Giuseppe Battaglia ◽  
Robert Luxenhofer

Abstract Polypeptoids are an old but recently rediscovered polymer class with interesting synthetic, physico-chemical and biological characteristics. Here, we introduce new aromatic monomers, N-benzyl glycine N-carboxyanhydride and N-phenethyl glycine N-carboxyanhydride and their block copolymers with the hydrophilic polysarcosine. We compare their self-assembly in water and aqueous buffer with the self-assembly of amphiphilic block copolypeptoids with aliphatic side chains. The aggregates in water were investigated by dynamic light scattering and electron microscopy. We found a variety of morphologies, which were influenced by the polymer structure as well as by the preparation method. Overall, we found polymersomes, worm-like micelles and oligo-lamellar morphologies as well as some less defined aggregates of interconnected worms and vesicles. Such, this contribution may serve as a starting point for a more detailed investigation of the self-assembly behavior of the rich class of polypeptoids and for a better understanding between the differences in the aggregation behavior of non-uniform polypeptoids and uniform peptoids.


2004 ◽  
Vol 76 (7-8) ◽  
pp. 1365-1374 ◽  
Author(s):  
L. M. Croll ◽  
H. D. H. Stöver

Poly(divinylbenzene-55)[poly(DVB-55] microspheres were used as building blocks to form polymer capsule walls consisting of interconnected microspheres. The microspheres had to be surface-functionalized with maleic acid to facilitate their interfacial assembly. In addition, porous and functionalized poly(DVB-55) microspheres were embedded across interfacial polyurea capsule membranes to form composite tectocapsules where release of core materials is designed to occur through the microsphere pores, rather than by conventional wall diffusion. Electron microscopy and X-ray spectromicroscopy were used to characterize the wall compositions, and release data are presented to illustrate the role of microspheres acting as release portals.


Soft Matter ◽  
2020 ◽  
Vol 16 (28) ◽  
pp. 6599-6607 ◽  
Author(s):  
Pijush Singh ◽  
Souvik Misra ◽  
Nayim Sepay ◽  
Sanjoy Mondal ◽  
Debes Ray ◽  
...  

The self-assembly and photophysical properties of 4-nitrophenylalanine (4NP) are changed with the alteration of solvent and final self-assembly state of 4NP in competitive solvent mixture and are dictated by the solvent ratio.


2019 ◽  
Vol 4 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Ryan T. Shafranek ◽  
Joel D. Leger ◽  
Song Zhang ◽  
Munira Khalil ◽  
Xiaodan Gu ◽  
...  

Directed self-assembly in polymeric hydrogels allows tunability of thermal response and viscoelastic properties.


Sign in / Sign up

Export Citation Format

Share Document