Investigation of the motor system in two siblings with Canavan’s disease: a combined transcranial magnetic stimulation (TMS) – diffusion tensor imaging (DTI) study

2017 ◽  
Vol 32 (2) ◽  
pp. 307-310
Author(s):  
V. K. Kimiskidis ◽  
Vasileios Papaliagkas ◽  
S. Papagiannopoulos ◽  
D. Zafeiriou ◽  
D. Kazis ◽  
...  
2020 ◽  
Vol 10 (12) ◽  
pp. 929
Author(s):  
Dong-Ha Kang ◽  
Gi-Wook Kim

Post-trauma chronic pain characterized by central pain is a symptom following traumatic brain injury (TBI). Studies on the effect of repetitive transcranial magnetic stimulation (rTMS) on central pain and the association between central pain and spinothalamic tract (STT) have been reported, but few studies have examined the effect of rTMS in patients with mild TBI with central pain through changes in diffusion tensor imaging (DTI)-based metrics of STT before and after rTMS. This case series aimed to investigate the therapeutic effect of rTMS in TBI with central pain and the changes in diffusion tensor imaging (DTI)-based metrics of the spinothalamic tract (STT) before and after rTMS. This study included four patients who complained of severe pain in the left or right side of the body below the neck area after a car accident. We performed numeric rating scale (NRS), bedside sensory examination, electrodiagnostic study, and DTI-based metrics of the STT before and after rTMS. According to the guidelines of the diagnosis and grading for neuropathic pain, all patients had neuropathic pain corresponding to “probable grade.” In all patients, rTMS was applied to the contralateral M1 cortex on the more painful side. There were no medication changes and other interventions during the rTMS. After rTMS, NRS decreased, bed sensory testing improved, and DTI-based STT metrics increased in all patients compared to before rTMS.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Naoki Yamada ◽  
Ryo Ueda ◽  
Wataru Kakuda ◽  
Ryo Momosaki ◽  
Takahiro Kondo ◽  
...  

We aimed to investigate plastic changes in cerebral white matter structures using diffusion tensor imaging following a 15-day stroke rehabilitation program. We compared the detection of cerebral plasticity between generalized fractional anisotropy (GFA), a novel tool for investigating white matter structures, and fractional anisotropy (FA). Low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) of 2400 pulses applied to the nonlesional hemisphere and 240 min intensive occupation therapy (OT) daily over 15 days. Motor function was evaluated using the Fugl-Meyer assessment (FMA) and Wolf Motor Function Test (WMFT). Patients underwent diffusion tensor magnetic resonance imaging (MRI) on admission and discharge, from which bilateral FA and GFA values in Brodmann area (BA) 4 and BA6 were calculated. Motor function improved following treatment (p<0.001). Treatment increased GFA values for both the lesioned and nonlesioned BA4 (p<0.05, p<0.001, resp.). Changes in GFA value for BA4 of the lesioned hemisphere were significantly inversely correlated with changes in WMFT scores (R2=0.363, p<0.05). Our findings indicate that the GFA may have a potentially more useful ability than FA to detect changes in white matter structures in areas of fiber intersection for any such future investigations.


2014 ◽  
Vol 10 (4) ◽  
pp. 542-554 ◽  
Author(s):  
Alfredo Conti ◽  
Giovanni Raffa ◽  
Francesca Granata ◽  
Vincenzo Rizzo ◽  
Antonino Germanò ◽  
...  

Abstract BACKGROUND: Diffusion tensor imaging tractography provides 3-dimensional reconstruction of principal white matter tracts, but its spatial accuracy has been questioned. Navigated transcranial magnetic stimulation (nTMS) enables somatotopic mapping of the motor cortex. OBJECTIVE: We used motor maps to reconstruct the corticospinal tract (CST) by integrating elements of its somatotopic organization. We analyzed the accuracy of this method compared with a standard technique and verified its reliability with intraoperative subcortical stimulation. METHODS: We prospectively collected data from patients who underwent surgery between January 2012 and October 2013 for lesions involving the CST. nTMS-based diffusion tensor imaging tractography was compared with a standard technique. The reliability and accuracy between the 2 techniques were analyzed by comparing the number of fibers, the concordance in size, and the location of the cortical end of the CST and the motor area. The accuracy of the technique was assessed by using direct subcortical stimulation. RESULTS: Twenty patients were enrolled in the study. nTMS-based tractography provided a detailed somatotopic reconstruction of the CST. This nTMS-based reconstruction resulted in a decreased number of fibers (305.1 ± 231.7 vs 1024 ± 193, P &lt; .001) and a significantly greater overlap between the motor cortex and the cortical end-region of the CST compared with the standard technique (90.5 ± 8.8% vs 58.3 ± 16.6%, P &lt; .001). Direct subcortical stimulation confirmed the CST location and the somatotopic reconstruction in all cases. CONCLUSION: These results suggest that nTMS-based tractography of the CST is more accurate and less operator dependent than the standard technique and provides a reliable anatomic and functional characterization of the motor pathway.


Sign in / Sign up

Export Citation Format

Share Document