An accurate molecular mechanics model for computation of size-dependent elastic properties of armchair and zigzag single-walled carbon nanotubes

Meccanica ◽  
2012 ◽  
Vol 48 (6) ◽  
pp. 1355-1367 ◽  
Author(s):  
R. Ansari ◽  
M. Mirnezhad ◽  
S. Sahmani
Author(s):  
Tienchong Chang ◽  
Jingyan Geng ◽  
Xingming Guo

Molecular mechanics has been widely used to analytically study mechanical behaviour of carbon nanotubes. However, explicit expressions for elastic properties of carbon nanotubes are so far confined to some special cases due to the lack of fully constructed governing equations for the molecular mechanics model. In this paper, governing equations for an analytical molecular mechanics model are fully established. The explicit expressions for five in-plane elastic properties of a chiral single-walled carbon nanotube are derived, which make properties at different length-scales directly connected. The effects of tube chirality and tube diameter are investigated. In particular, the present results show that the classic relationship from the isotropic elastic theory of continuum mechanics between Young's modulus and shear modulus of a single-walled carbon nanotube is not retained. The present analytical results are helpful to the understanding of elastic properties of carbon nanotubes, and also useful to the topic of linking molecular mechanics with continuum mechanics.


2016 ◽  
Vol 30 (08) ◽  
pp. 1650118 ◽  
Author(s):  
Igor K. Petrushenko ◽  
Konstantin B. Petrushenko

The structural and elastic properties of neutral and ionized dichlorocarbene (CCl2) functionalized single-walled carbon nanotubes (SWCNTs) were studied using density functional theory (DFT). The Young’s modulus of ionized pristine SWCNTs is found to decrease in comparison to that of neutral models. The interesting effect of increase in Young’s modulus values of ionized functionalized SWCNTs is observed. We ascribe this feature to the concurrent processes of the bond elongation on ionization and the local deformation on cycloaddition. The strong dependence of the elasticity modulus on the number of addends is also observed. However, the CCl2-attached SWCNTs in their neutral and ionized forms remain strong enough to be suitable for the reinforcement of composites. In contrast to the elastic properties, the binding energies do not change significantly, irrespective of CCl2 coverage.


2014 ◽  
Vol 28 (14) ◽  
pp. 1450074 ◽  
Author(s):  
Na Chen ◽  
Qing Xu ◽  
Xiang Ye

The single-walled carbon nanotubes (SWCNTs) under high internal pressure are studied by the constant-pressure molecular dynamics method. The results show that SWCNTs are suitable candidates for high pressure nanocontainer, and they can resist 30 GPa to 110 GPa internal pressure. We find that the ultimate internal pressure that nanotubes can sustain is mainly determined by the radius of the tube, and it is not sensitive to the tube chirality. The breaking of the nanotube induced by high internal pressure is mainly due to bond stretching rather than bond angle changing. An elastic model is used to explain the size-dependent ultimate internal pressure behavior for SWCNTs.


Sign in / Sign up

Export Citation Format

Share Document