Topology optimization and heat dissipation performance analysis of a micro-channel heat sink

Meccanica ◽  
2018 ◽  
Vol 53 (15) ◽  
pp. 3693-3708 ◽  
Author(s):  
Yi Lv ◽  
Sheng Liu
2012 ◽  
Vol 459 ◽  
pp. 609-614
Author(s):  
Kuo Zoo Liang ◽  
A Cheng Wang ◽  
Chun Ho Liu ◽  
Lung Tasi ◽  
Yan Cherng Lin

The purpose of this research is to design a new heat sink of water-cooling. With the aid of CAE (computer aided engineering), WEDM (wire electrical discharge machining), and the concept of micro-channel design, a heat sink of water-cooling can then be built with the merit of a smaller volume and lower thermal resistance. From this paper, results of the experiment indicate that the thermal resistance of heat sink can be decreased to 0.12 °C/W with input power of 60W, flow rate of 0.6 LPM, and a better heat dissipation with the in input power of 100W or 140W can be revealed.


2019 ◽  
Vol 163 ◽  
pp. 114330 ◽  
Author(s):  
Minqiang Pan ◽  
Xineng Zhong ◽  
Guanping Dong ◽  
Pingnan Huang

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 132
Author(s):  
Haiying Chen ◽  
Chuan Chen ◽  
Yunyan Zhou ◽  
Chenglin Yang ◽  
Gang Song ◽  
...  

This article presents a novel cross-rib micro-channel (MC-CR) heat sink to make fluid self-rotate. For a thermal test chip (TTC) with 100 w/cm2, the cross-ribs micro-channel were compared with the rectangular (MC-R) and horizontal rib micro-channel (MC-HR) heat sinks. The results show that, with the cross-rib micro-channel, the junction temperature of the thermal test chip was 336.49 K, and the pressure drop was 22 kPa. Compared with the rectangular and horizontal ribs heat sink, the cross-rib micro-channel had improvements of 28.6% and 14.3% in cooling capability, but the pressure drop increased by 10.7-fold and 5.5-fold, respectively. Then, the effects of the aspect ratio (λ) of micro-channel in different flow rates were studied. It was found that the aspect ratio and cooling performance were non-linear. To reduce the pressure drop, the inclination (α) and spacing (S) of the cross-ribs were optimized. When α = 30°, S = 0.1 mm, and λ = 4, the pressure drop was reduced from 22 kPa to 4.5 kPa. In addition, the heat dissipation performance of the rectangular, staggered fin (MC-SF), staggered rib (MC-SR) and cross-rib micro-channels were analyzed in the condition of the same pressure drop, MC-CR still has superior heat dissipation performance.


2020 ◽  
Vol 148 ◽  
pp. 106145 ◽  
Author(s):  
Yaser Hadad ◽  
Srikanth Rangararajan ◽  
Kourosh Nemati ◽  
Bharath Ramakrishnann ◽  
Reza Pejman ◽  
...  

2016 ◽  
Vol 102 ◽  
pp. 989-1000 ◽  
Author(s):  
Afzal Husain ◽  
Mohd Ariz ◽  
Nabeel Z.H. Al-Rawahi ◽  
Mohd.Z. Ansari

Demand for greater capability of electronic devices in very small volume for compactness has affected huge augmentations in heat indulgence at all stages of device, electronic wrapping, test section and system. Latest cooling systems are hence needed to eliminate the released heat while maintaining compactness of the device. The micro-channel heat sink (MCHS) is ideal for this situation as it consists of channels of micron size which offers an extended surface area to volume ratio of approximately 15.294 m2 / m3 compared to 650 m2 / m3 for a typical heat compact exchanger. A comprehensive review has been done for consequence of heat flux (qo ), mass flux (G), vapour quality (x) and channel geometries at flow patterns and heat dissipation of MCHS. The study show that to increase the rate of heat transfer by using different channel geometries like converging-diverging, segmented etc. compared to conventional rectangular micro-channels has given better cooling effect The Flow patterns like bubbly, slug flow are associated with nucleate boiling dominated in low vapour quality and annular flow also given the significant effect on heat transfer in higher vapour quality region


2021 ◽  
Vol 20 ◽  
pp. 240-249
Author(s):  
Siyuan Bai ◽  
Khalil Guy ◽  
Yuxiang Jia ◽  
Weiyi Li ◽  
Qingxia Li ◽  
...  

This research will focus on studying the effect of aperture size and shape of the micro-channel heat sink on heat dissipation performance for chip cooling. The micro-channel heat sink is considered to be a porous medium with fluid subject inter-facial convection. Derivation based on energy equation gives a set of governing partial differential equations describing the heat transfer through the micro-channels. Numerical simulation, including steady-state thermal analysis based on CFD software, is used to create a finite element solver to tackle the derived partial differential equations with properly defined boundary conditions related to temperature. After simulating three types of heat sinks with various protrusion designs including micro-channels fins, curly micro-channels fins, and Micro-pin fins, the result shows that the heat sink with the maximum contact area per unit volume will have the best heat dissipation performance, we will interpret the result by using the volume averaging theorem on the porous medium model of the heat sink.


2011 ◽  
Vol 1 (9) ◽  
pp. 65-67
Author(s):  
Pritesh S Patel ◽  
◽  
Prof. Dattatraya G Subhedar ◽  
Prof. Kamlesh V Chauhan

Sign in / Sign up

Export Citation Format

Share Document