The effect of conservation tillage in managing climate change in arid and semiarid areas—a case study in Northwest China

Author(s):  
Lin Dong ◽  
Tong Si ◽  
Yu-e Li ◽  
Xiao-Xia Zou
2022 ◽  
Vol 12 ◽  
Author(s):  
Yang Hu ◽  
Xingyu Jiang ◽  
Keqiang Shao ◽  
Xiangming Tang ◽  
Boqiang Qin ◽  
...  

Climate change has given rise to salinization and nutrient enrichment in lake ecosystems of arid and semiarid areas, which have posed the bacterial communities not only into an ecotone in lake ecosystems but also into an assemblage of its own unique biomes. However, responses of bacterial communities to climate-related salinization and nutrient enrichment remain unclear. In September 2019, this study scrutinized the turnover of bacterial communities along gradients of increasing salinity and nutrient by a space-for-time substitution in Xinjiang Uyghur Autonomous Region, China. We find that salinization rather than nutrient enrichment primarily alters bacterial communities. The homogenous selection of salinization leads to convergent response of bacterial communities, which is revealed by the combination of a decreasing β-nearest taxon index (βNTI) and a pronounced negative correlation between niche breadth and salinity. Furthermore, interspecific interactions within bacterial communities significantly differed among distinct salinity levels. Specifically, mutualistic interactions showed an increase along the salinization. In contrast, topological parameters show hump-shaped curves (average degree and density) and sunken curves (modularity, density, and average path distance), the extremums of which all appear in the high-brackish environment, hinting that bacterial communities are comparatively stable at freshwater and brine environments but are unstable in moderately high-brackish lake.


Author(s):  
Yuanyuan Wang ◽  
Fanhao Meng ◽  
Min Luo

Abstract Growing water shortages have been a systemic risk around the world, especially in arid and semi-arid areas, with seriously threatening global food security and human well-being. Reasonable and accurate evaluations of the water shortages of cultivated lands provide scientific reference for irrigation strategies. In this study, to better understand the distribution and cause of water scarcity for the arid and semiarid areas, we used the arable land water scarcity index (AWSI), based on water footprint theory to accurately estimate the temporal and spatial patterns of the AWSI of Inner Mongolia in China over 1999–2018, and further reveal the key factors influencing the AWSI distribution. The AWSI distribution pattern of Inner Mongolia was high in southwest and low in northeast, with an average value of 0.63 and suffering from high water stress for a long time. The AWSI presented an increasing trend in 1999–2018, with slow in west (change rate2%) and fast in east (2%). The main factors that significantly affected the AWSI were precipitation, relative humidity, and agricultural planting area. This study can provide scientific reference for the formulation of agricultural water management and sustainable use strategies in arid and semiarid areas.


Sign in / Sign up

Export Citation Format

Share Document