Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato

2007 ◽  
Vol 20 (3) ◽  
pp. 271-284 ◽  
Author(s):  
Yuanfu Ji ◽  
David J. Schuster ◽  
Jay W. Scott
PLoS Genetics ◽  
2013 ◽  
Vol 9 (3) ◽  
pp. e1003399 ◽  
Author(s):  
Maarten G. Verlaan ◽  
Samuel F. Hutton ◽  
Ragy M. Ibrahem ◽  
Richard Kormelink ◽  
Richard G. F. Visser ◽  
...  

2017 ◽  
Author(s):  
Manal Tashkandi ◽  
Zahir Ali ◽  
Fatimah Aljedaani ◽  
Ashwag Shami ◽  
Magdy M. Mahfouz

AbstractCRISPR/Cas systems confer molecular immunity against phages and conjugative plasmids in prokaryotes. Recently, CRISPR/Cas9 systems have been used to confer interference against eukaryotic viruses. Here, we engineered Nicotiana benthamiana and tomato (Solanum lycopersicum) plants with the CRISPR/Cas9 system to confer immunity against the Tomato yellow leaf curl virus (TYLCV). Targeting the TYLCV genome with Cas9-single guide RNA at the sequences encoding the coat protein (CP) or replicase (Rep) resulted in efficient virus interference, as evidenced by low accumulation of the TYLCV DNA genome in the transgenic plants. The CRISPR/Cas9-based immunity remained active across multiple generations in the N. benthamiana and tomato plants. Together, our results confirmed the efficiency of the CRISPR/Cas9 system for stable engineering of TYLCV resistance in N. benthamiana and tomato, and opens the possibilities of engineering virus resistance against single and multiple infectious viruses in other crops.


2016 ◽  
Author(s):  
Moshe Lapidot ◽  
Vitaly Citovsky

Tomato yellow leaf curl virus (TYLCV) is a major pathogen of tomato that causes extensive crop loss worldwide, including the US and Israel. Genetic resistance in the host plant is considered highly effective in the defense against viral infection in the field. Thus, the best way to reduce yield losses due to TYLCV is by breeding tomatoes resistant or tolerant to the virus. To date, only six major TYLCV-resistance loci, termed Ty-1 to Ty-6, have been characterized and mapped to the tomato genome. Among tomato TYLCV-resistant lines containing these loci, we have identified a major recessive quantitative trait locus (QTL) that was mapped to chromosome 4 and designated ty-5. Recently, we identified the gene responsible for the TYLCV resistance at the ty-5 locus as the tomato homolog of the gene encoding messenger RNA surveillance factor Pelota (Pelo). A single amino acid change in the protein is responsible for the resistant phenotype. Pelo is known to participate in the ribosome-recycling phase of protein biosynthesis. Our hypothesis was that the resistant allele of Pelo is a “loss-of-function” mutant, and inhibits or slows-down ribosome recycling. This will negatively affect viral (as well as host-plant) protein synthesis, which may result in slower infection progression. Hence we have proposed the following research objectives: Aim 1: The effect of Pelota on translation of TYLCV proteins: The goal of this objective is to test the effect Pelota may or may not have upon translation of TYLCV proteins following infection of a resistant host. Aim 2: Identify and characterize Pelota cellular localization and interaction with TYLCV proteins: The goal of this objective is to characterize the cellular localization of both Pelota alleles, the TYLCV-resistant and the susceptible allele, to see whether this localization changes following TYLCV infection, and to find out which TYLCV protein interacts with Pelota. Our results demonstrate that upon TYLCV-infection the resistant allele of pelota has a negative effect on viral replication and RNA transcription. It is also shown that pelota interacts with the viral C1 protein, which is the only viral protein essential for TYLCV replication. Following subcellular localization of C1 and Pelota it was found that both protein localize to the same subcellular compartments. This research is innovative and potentially transformative because the role of Peloin plant virus resistance is novel, and understanding its mechanism will lay the foundation for designing new antiviral protection strategies that target translation of viral proteins. BARD Report - Project 4953 Page 2 


2016 ◽  
Vol 4 (1) ◽  
pp. 79-86
Author(s):  
Panpan Dong ◽  
Koeun Han ◽  
Muhammad Irfan Siddique ◽  
Jin-Kyung Kwon ◽  
Meiai Zhao ◽  
...  

2009 ◽  
Vol 134 (2) ◽  
pp. 281-288 ◽  
Author(s):  
Yuanfu Ji ◽  
Jay W. Scott ◽  
David J. Schuster ◽  
Douglas P. Maxwell

Resistance to begomoviruses, including bipartite tomato mottle virus (ToMoV) and monopartite tomato yellow leaf curl virus (TYLCV), has been introgressed to cultivated tomato (Solanum lycopersicum) from Solanum chilense accessions LA1932 and LA2779. A major gene, Ty-3, responsible for resistance to ToMoV and TYLCV was previously mapped on the long arm of chromosome 6. In the present study, we identified a 14-cM S. chilense introgression on the long arm of chromosome 3 in some resistant breeding lines derived from LA1932. A new begomovirus resistance locus, Ty-4, was mapped to the 2.3-cM marker interval between C2_At4g17300 and C2_At5g60160 in the introgression. Analysis of a population segregating for Ty-3 and Ty-4 demonstrated that Ty-3 accounted for 59.6% of the variance, while Ty-4 only accounted for 15.7%, suggesting that Ty-4 confers a lesser effect on TYLCV resistance. Recombinant inbred lines (RILs) with Ty-3 and Ty-4 had the highest level of TYLCV resistance. The PCR-based markers tightly linked to the Ty-4 locus as well as the Ty-3 locus have been recently used in our breeding program for efficient selection of high-levels of begomovirus resistance and now allow for efficient breeding by marker-assisted selection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinlei Wang ◽  
Jing Jiang ◽  
Liping Zhao ◽  
Rong Zhou ◽  
Wengui Yu ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Sign in / Sign up

Export Citation Format

Share Document