scholarly journals FLOURY ENDOSPERM19 encoding a class I glutamine amidotransferase affects grain quality in rice

2021 ◽  
Vol 41 (6) ◽  
Author(s):  
Guangming Lou ◽  
Pingli Chen ◽  
Hao Zhou ◽  
Pingbo Li ◽  
Jiawang Xiong ◽  
...  
2021 ◽  
Author(s):  
Guangming Lou ◽  
Pingli Chen ◽  
Hao Zhou ◽  
Pingbo Li ◽  
Jiawang Xiong ◽  
...  

Abstract As a staple food for more than half of the world’s population, the importance of rice is self-evident. Compared with ordinary rice, rice cultivars with superior eating quality and appearance quality are more popular with consumers due to its unique taste and ornamental value, even if their price is much higher. Appearance quality and CEQ (cooking and eating quality) are two very important aspects in the evaluation of rice quality. Here, we performed a genome-wide association study on chalkiness rate in a diverse panel of 533 cultivated rice accessions. We identified a batch of potential chalky genes and prioritize one (LOC_Os03g48060) for functional analyses. Two floury outer endosperm mutants (flo19-1 and flo19-2) were generated through editing LOC_Os03g48060 (named as FLO19 in this study), which encodes a class I glutamine amidotransferase. The different performance of the two mutants in various storage substances directly led to completely different changes in CEQ. The mutation of FLO19 gene caused the damage of carbon and nitrogen metabolism in rice, which affected the normal growth and development of rice, including decreased plant height and yield loss by decreased grain filling rate. Through haplotype analysis, we identified a haplotype of FLO19 that can improve both CEQ and appearance quality of rice, Hap2, which provides a selection target for rice quality improvement, especially for high-yield indica rice varieties.


Author(s):  
T. A. Stewart ◽  
D. Liggitt ◽  
S. Pitts ◽  
L. Martin ◽  
M. Siegel ◽  
...  

Insulin-dependant (Type I) diabetes mellitus (IDDM) is a metabolic disorder resulting from the lack of endogenous insulin secretion. The disease is thought to result from the autoimmune mediated destruction of the insulin producing ß cells within the islets of Langerhans. The disease process is probably triggered by environmental agents, e.g. virus or chemical toxins on a background of genetic susceptibility associated with particular alleles within the major histocompatiblity complex (MHC). The relation between IDDM and the MHC locus has been reinforced by the demonstration of both class I and class II MHC proteins on the surface of ß cells from newly diagnosed patients as well as mounting evidence that IDDM has an autoimmune pathogenesis. In 1984, a series of observations were used to advance a hypothesis, in which it was suggested that aberrant expression of class II MHC molecules, perhaps induced by gamma-interferon (IFN γ) could present self antigens and initiate an autoimmune disease. We have tested some aspects of this model and demonstrated that expression of IFN γ by pancreatic ß cells can initiate an inflammatory destruction of both the islets and pancreas and does lead to IDDM.


Sign in / Sign up

Export Citation Format

Share Document