eating quality
Recently Published Documents


TOTAL DOCUMENTS

997
(FIVE YEARS 214)

H-INDEX

53
(FIVE YEARS 6)

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 172
Author(s):  
Chang Liu ◽  
Hejing Yan ◽  
Suwen Liu ◽  
Xuedong Chang

Chestnut is popular worldwide for its unique flavor, high eating quality and nutrition. Here, we evaluated the influence of phosphorylation and acetylation on the structural, physicochemical and functional properties of chestnut starch. Scanning electron micrographs showed the agglomeration of starch granules and the appearance of numerous dents on the starch granule surface under phosphorylation and acetylation. X-ray diffractograms confirmed that the modification treatments did not affect the C-type crystal pattern, but reduced the relative crystallinity of the chestnut starch, particularly phosphorylation. Moreover, modification improved the paste transparency of the starch. Differential scanning calorimeter analysis revealed that the gelatinization temperature and enthalpy of the starch decreased with the increasing substitution degree, particularly in phosphorylated starch. The Rapid Visco Analyser analysis demonstrated that phosphorylation could greatly improve the pasting properties of chestnut starch. In addition, phosphorylated and acetylated starch had a smaller amount of slowly digested starch and a larger amount of resistant starch relative to native chestnut starch. In conclusion, the functional and physicochemical properties of chestnut starch can be significantly improved through phosphorylation and acetylation, demonstrating its great application potential as a food additive.


HortScience ◽  
2022 ◽  
Vol 57 (1) ◽  
pp. 24-31
Author(s):  
Achala N. KC ◽  
Ann L. Rasmussen ◽  
Joseph B. DeShields

Sprayable formulation of 1-methylcyclopropene (1-MCP) was tested as a preharvest application on European pears to determine the best timing and rate of 1-MCP application for maintaining fruit firmness and quality of trees during harvest and in storage after harvest. Two rates of 1-MCP, 0.06 and 0.13 g⋅L−1 active ingredient (a.i.) (minimum and maximum rates, respectively), were sprayed 1 week and 2 weeks before commercial harvest on two cultivars, Bosc and Comice, in 2017 and 2018. After 2 months in cold storage (0 ± 1 °C), differences in fruit firmness of both cultivars were observed among treatments. For ‘Bosc’, fruit treated with both rates 1 week before harvest were 50% firmer than nontreated control fruit. For ‘Comice’, fruit treated with the maximum rate both 2 weeks and 1 week before commercial harvest were 46% and 31% firmer than nontreated control fruit, respectively. However, after 4 months in storage, no differences in fruit firmness of both ‘Bosc’ and ‘Comice’ were observed among treatments. The sprayable 1-MCP application applied 2 weeks before commercial harvest also affected the fruit firmness on trees. The maximum rate of 1-MCP treatment consistently maintained the fruit firmness by 5.0 N compared with fruit treated with the minimum rate and nontreated controls. This effect was significant until 1 week after commercial harvest for both cultivars and until 2 weeks after commercial harvest for ‘Bosc’. The poststorage fruit firmness and overall eating quality of ‘Bosc’ were unaffected by the maximum rate of 1-MCP application as well as the extended harvest time. However, for ‘Comice’, the overall eating quality was negatively impacted by 1-MCP treatments. This study suggests that the maximum rate (0.13 g⋅L−1 a.i.) of 1-MCP application 2 weeks before commercial harvest maintains the fruit firmness of ‘Bosc’ for at least 2 weeks more and offers an extended harvest window for better preharvest management. Furthermore, this treatment improves the physiological fruit quality such as senescence scald during the poststorage period without significantly affecting the poststorage ripening of ‘Bosc’ after 4 months of storage.


2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Katarzyna Śmiecińska ◽  
Wiesław Sobotka ◽  
Elwira Fiedorowicz-Szatkowska

The objective of this study was to evaluate carcass and meat quality in growing-finishing pigs fed diets with different vegetable protein sources. It was found that partial (50% in grower diets) and complete (100% in finisher diets) replacement of protein from genetically modified soybean meal (GM-SBM) with protein from 00-rapeseed meal (00-RSM), alone or in combination with protein from faba bean seeds (FB) cv. ‘Albus’, yellow lupine seeds (YL) cv. ‘Taper’ or corn DDGS, had no significant effect on carcass quality characteristics or the chemical composition of meat. In all groups, meat samples were characterized by color typical of pork, high water-holding capacity and low pH values. A sensory analysis of the eating quality attributes of meat revealed that they were highly satisfactory; only aroma intensity was affected by the experimental factor. The study demonstrated that growing-finishing pigs can be fed complete diets containing the analyzed vegetable protein sources alternative to GM-SBM without compromising carcass or meat quality.


2021 ◽  
Author(s):  
Sixuan Li ◽  
Xin Ren ◽  
Min Zhang ◽  
Sailimuhan Asimi ◽  
Qixin Lv ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 135-142
Author(s):  
Anita Khairunnisa ◽  
Emmy Darmawati ◽  
Siti Mariana Widayanti

Mangoes are harvested when ripe have an "eating quality" that consumers are them in, but quickly reach the senescence phase, making it less profitable for businesses. As a climacteric fruit, the ripening process of mango can be slowed down by using an ethylene adsorber. This study aims to determine the combination of zeolite-KMnO4 and silica gel as ethylene adsorber (EAB) to maintain the green life of ripe The material used is ethylene adsorber (EAB) which is applied to mango arumanis which is packaged with a weight package of 1000±50 g. After the shelf life is reached, the EAB is removed from the packaging and the mangoes are left at room temperature for natural ripening and continued until conditions are not acceptable to consumers. The results showed that the EAB application was able to maintain the green life of mangoes by the scenario of the shelf life both at cold and room temperature storage. Natural ripening of mango was achieved 5 days and 2 days after EAB was removed from the packaging, for cold and room temperature storage, respectively. The length of time until the panellists did not receive it was 20 days for cold storage and 12 days for the room, while the control for cold storage was 6 and 3 days at room temperature


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 87
Author(s):  
Abil Dermail ◽  
Aphakorn Fuengtee ◽  
Kamol Lertrat ◽  
Willy Bayuardi Suwarno ◽  
Thomas Lübberstedt ◽  
...  

Multi-trait selection helps breeders identify genotypes that appeal to divergent groups of preferences. In this study, we performed simultaneous selection of sweet-waxy corn hybrids on several traits covering the perspectives of consumers (taller kernel depth, better eating quality), growers (early maturity, shorter plant stature, and high ear yield), and seed producers (high flowering synchrony, acceptable seed yield, and good plant architecture). Three supersweet corn lines and 8 waxy corn lines were intercrossed to generate 48 F1 hybrids according to North Carolina Design II, and these genotypes were laid out in a randomized complete block design with 3 replications across 2 seasons between 2017 and 2018. A sensory blind test on sweetness, stickiness, tenderness, and overall liking was conducted to assess the eating quality of steamed corn samples. Two methods of simultaneous selection, namely unweighted selection index and overall rank-sum index (ORSI), were applied to rank crosses, following all targeted groups of preferences. Genetic parameters and genetic gain were estimated to evaluate the effectiveness of those selection methods. Both approaches had similar patterns of preferable realized gain on each given trait and could identify similar top five crosses with only slight order changes, implying that these methods were effective to rank genotypes according to given selection criteria. One of the tested crosses, 101L/TSC-10 × KV/mon, consistently had the highest unweighted selection index in the dry (7.84) and the rainy (7.15) seasons and the lowest ORSI (310), becoming a promising candidate as synergistic sweet-waxy corn hybrid appealing to consumers, growers, and seed producers. The expected ideotypes of sweet-waxy corn hybrid are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bo Gao ◽  
Shaowu Hu ◽  
Liquan Jing ◽  
Yunxia Wang ◽  
Jianguo Zhu ◽  
...  

Evaluating the impact of increasing CO2 on rice quality is becoming a global concern. However, whether adjusting the source-sink ratio will affect the response of rice grain quality to elevated CO2 concentrations remains unknown. In 2016–2018, we conducted a free-air CO2 enrichment experiment using a popular japonica cultivar grown at ambient and elevated CO2 levels (eCO2, increased by 200 ppm), reducing the source-sink ratio via cutting leaves (LC) at the heading stage, to investigate the effects of eCO2 and LC and their interactions on rice processing, appearance, nutrition, and eating quality. Averaged across 3 years, eCO2 significantly decreased brown rice percentage (−0.5%), milled rice percentage (−2.1%), and head rice percentage (−4.2%) but increased chalky grain percentage (+ 22.3%) and chalkiness degree (+ 26.3%). Markedly, eCO2 increased peak viscosity (+ 2.9%) and minimum viscosity (+ 3.8%) but decreased setback (−96.1%) of powder rice and increased the appearance (+ 4.5%), stickiness (+ 3.5%) and balance degree (+ 4.8%) of cooked rice, while decreasing the hardness (−6.7%), resulting in better palatability (+ 4.0%). Further, eCO2 significantly decreased the concentrations of protein, Ca, S, and Cu by 5.3, 4.7, 2.2, and 9.6%, respectively, but increased K concentration by 3.9%. Responses of nutritional quality in different grain positions (brown and milled rice) to eCO2 showed the same trend. Compared with control treatment, LC significantly increased chalky grain percentage, chalkiness degree, protein concentration, mineral element levels (except for B and Mn), and phytic acid concentration. Our results indicate that eCO2 reduced rice processing suitability, appearance, and nutritional quality but improved the eating quality. Rice quality varied significantly among years; however, few CO2 by year, CO2 by LC, or CO2 by grain position interactions were detected, indicating that the effects of eCO2 on rice quality varied little with the growing seasons, the decrease in the source-sink ratios or the different grain positions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Zhang ◽  
Heng Xu ◽  
Yingying Jiang ◽  
Heng Zhang ◽  
Shiyu Wang ◽  
...  

Grain quality is one of the key targets to be improved for rice breeders and covers cooking, eating, nutritional, appearance, milling, and sensory properties. Cooking and eating quality are mostly of concern to consumers and mainly determined by starch structure and composition. Although many starch synthesis enzymes have been identified and starch synthesis system has been established for a long time, novel functions of some starch synthesis genes have continually been found, and many important regulatory factors for seed development and grain quality control have recently been identified. Here, we summarize the progress in this field as comprehensively as possible and hopefully reveal some underlying molecular mechanisms controlling eating quality in rice. The regulatory network of amylose content (AC) determination is emphasized, as AC is the most important index for rice eating quality (REQ). Moreover, the regulatory mechanism of REQ, especially AC influenced by high temperature which is concerned as a most harmful environmental factor during grain filling is highlighted in this review.


Author(s):  
Sanket Rathi ◽  
Sameer Upadhyay ◽  
P. K. Singh ◽  
Rajesh Kumar ◽  
Pallavi . ◽  
...  

Aim: Identification of polymorphic markers is prerequisite for conducting any QTL mapping experiment because if the parents are polymorphic for the traits of interest, then further selection of plants in the progenies becomes easy. Hence, the objective of the present study was to identify polymorphic markers for grain quality and yield traits among the parental lines Improved Samba Mahsuri and Badshabhog. Place and Duration of Study: It was carried out at Molecular Breeding Lab, Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi - 221 005, India, during 2019. Methodology: Two parents Improved Samba Mahsuri and Badshabhog were used for the present study. The DNA extraction was done as per the CTAB method suggested by Murray and Thompson. Standard PCR protocol was followed. Results: For parental polymorphism survey, a total of 576 randomly selected SSR markers including 26 gene specific markers related to aroma, cooking and eating quality, grain dimension and yield related traits distributed across the 12 chromosomes of rice were used. Overall, 96 markers including 4 gene specific markers were found to be polymorphic between the two genotypes indicating a total polymorphism percentage of 16.67%. The highest polymorphism percentage was recorded on chromosome 6 (26.67%) followed by chromosome 4 (21.43%) and the lowest polymorphism percentage was observed on chromosome 10 (8.93%). The gene specific markers nksbad2, ARO7, BADEX7_5 and SSI were found to be polymorphic. Conclusion: Based on the present study it may be concluded that the polymorphic markers identified will further be utilized in genotyping of F2:3 population, linkage analysis and mapping QTL’s for grain quality and yield traits.


Sign in / Sign up

Export Citation Format

Share Document