motor training
Recently Published Documents


TOTAL DOCUMENTS

545
(FIVE YEARS 160)

H-INDEX

36
(FIVE YEARS 5)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Brian A. Karamian ◽  
Nicholas Siegel ◽  
Blake Nourie ◽  
Mijail D. Serruya ◽  
Robert F. Heary ◽  
...  

AbstractElectrical stimulation is used to elicit muscle contraction and can be utilized for neurorehabilitation following spinal cord injury when paired with voluntary motor training. This technology is now an important therapeutic intervention that results in improvement in motor function in patients with spinal cord injuries. The purpose of this review is to summarize the various forms of electrical stimulation technology that exist and their applications. Furthermore, this paper addresses the potential future of the technology.


2021 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Stefania Lucia ◽  
Valentina Bianco ◽  
Luca Boccacci ◽  
Francesco Di Russo

The aim of this research was to test the possible effects of cognitive–motor training (CMT) on athletes’ sport performance and cognitive functions. Namely, specific athletic tests, brain processes associated with anticipatory event-related potential (ERP) components and behavioral performance during a cognitive discrimination response task were evaluated pre- and post-training. Twenty-four young semi-professional basketball players were recruited for the study and randomly divided into an experimental (Exp) group executing the CMT training and a control (Con) group performing standard motor training. The CMT training protocol included exercises in which participants performed cognitive tasks during dribbling exercises using interactive devices which emitted visual and auditory stimuli, in which athletes’ responses were recorded. Results showed that following training, only the Exp group improved in all sport-specific tests (17%) and more than the Con group (88% vs. 60%) in response accuracy during the cognitive test. At brain level, post-training anticipatory cognitive processes associated with proactive inhibition and top-down attention in the prefrontal cortex were earlier and heightened in the Exp group. Our findings confirm previous studies on clear improved efficacy of CMT training protocols on sport performance and cognition compared to training based on motor exercises only, but extend the literature in showing that these effects might be explained by enhanced anticipatory brain processing in the prefrontal cortex. The present study also suggests that in order to achieve specific athletic goals, the brain adapts cognitive functions by means of neuroplasticity processes.


2021 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Pramudika Nirmani Kariyawasam ◽  
Shinya Suzuki ◽  
Susumu Yoshida

Bilateral motor training is a useful method for modifying corticospinal excitability. The effects of bilateral movement that are caused by artificial stimulation on corticospinal excitability have not been reported. We compared motor-evoked potentials (MEPs) of the primary motor cortex (M1) after conventional bilateral motor training and artificial bilateral movements generated by electromyogram activity of abductor pollicis brevis (APB) muscle-triggered peripheral nerve stimulation (c-MNS) and transcranial magnetic stimulation of the ipsilateral M1 (i-TMS). A total of three protocols with different interventions—bilateral finger training, APB-triggered c-MNS, and APB-triggered i-TMS—were administered to 12 healthy participants. Each protocol consisted of 360 trials of 30 min for each trial. MEPs that were induced by single-pulse TMS, short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) that were induced by paired-pulse TMS were assessed as outcome measures at baseline and at 0, 20, 40, and 60 min after intervention. MEP amplitude significantly increased up to 40 min post-intervention in all protocols compared to that at the baseline, although there were some differences in the changing pattern of ICF and SICI in each protocol. These findings suggest that artificial bilateral movement has the potential to increase the ipsilateral cortical excitability of the moving finger.


2021 ◽  
Author(s):  
Rossitza Draganova ◽  
Frank Konietschke ◽  
Katharina M. Steiner ◽  
Naveen Elangovan ◽  
Meltem Gümüs ◽  
...  

2021 ◽  
Vol 118 (50) ◽  
pp. e2114856118
Author(s):  
Avital Adler ◽  
Cora Sau Wan Lai ◽  
Guang Yang ◽  
Erez Geron ◽  
Yang Bai ◽  
...  

Changes in synaptic connections are believed to underlie long-term memory storage. Previous studies have suggested that sleep is important for synapse formation after learning, but how sleep is involved in the process of synapse formation remains unclear. To address this question, we used transcranial two-photon microscopy to investigate the effect of postlearning sleep on the location of newly formed dendritic filopodia and spines of layer 5 pyramidal neurons in the primary motor cortex of adolescent mice. We found that newly formed filopodia and spines were partially clustered with existing spines along individual dendritic segments 24 h after motor training. Notably, posttraining sleep was critical for promoting the formation of dendritic filopodia and spines clustered with existing spines within 8 h. A fraction of these filopodia was converted into new spines and contributed to clustered spine formation 24 h after motor training. This sleep-dependent spine formation via filopodia was different from retraining-induced new spine formation, which emerged from dendritic shafts without prior presence of filopodia. Furthermore, sleep-dependent new filopodia and spines tended to be formed away from existing spines that were active at the time of motor training. Taken together, these findings reveal a role of postlearning sleep in regulating the number and location of new synapses via promoting filopodial formation.


2021 ◽  
pp. 154596832110566
Author(s):  
Emilia Conti ◽  
Alessandro Scaglione ◽  
Giuseppe de Vito ◽  
Francesco Calugi ◽  
Maria Pasquini ◽  
...  

Background. An ischemic stroke is followed by the remapping of motor representation and extensive changes in cortical excitability involving both hemispheres. Although stimulation of the ipsilesional motor cortex, especially when paired with motor training, facilitates plasticity and functional restoration, the remapping of motor representation of the single and combined treatments is largely unexplored. Objective. We investigated if spatio-temporal features of motor-related cortical activity and the new motor representations are related to the rehabilitative treatment or if they can be specifically associated to functional recovery. Methods. We designed a novel rehabilitative treatment that combines neuro-plasticizing intervention with motor training. In detail, optogenetic stimulation of peri-infarct excitatory neurons expressing Channelrhodopsin 2 was associated with daily motor training on a robotic device. The effectiveness of the combined therapy was compared with spontaneous recovery and with the single treatments (ie optogenetic stimulation or motor training). Results. We found that the extension and localization of the new motor representations are specific to the treatment, where most treatments promote segregation of the motor representation to the peri-infarct region. Interestingly, only the combined therapy promotes both the recovery of forelimb functionality and the rescue of spatio-temporal features of motor-related activity. Functional recovery results from a new excitatory/inhibitory balance between hemispheres as revealed by the augmented motor response flanked by the increased expression of parvalbumin positive neurons in the peri-infarct area. Conclusions. Our findings highlight that functional recovery and restoration of motor-related neuronal activity are not necessarily coupled during post-stroke recovery. Indeed the reestablishment of cortical activation features of calcium transient is distinctive of the most effective therapeutic approach, the combined therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Miriam Lelong ◽  
Annina Zysset ◽  
Mirjam Nievergelt ◽  
Reto Luder ◽  
Ulrich Götz ◽  
...  

Abstract Background Motor deficiencies are observed in a large number of children with ADHD. Especially fine motor impairments can lead to academic underachievement, low self-esteem and frustration in affected children. Despite these far-reaching consequences, fine motor deficiencies have remained widely undertreated in the ADHD population. The aim of this review was to systematically map the evidence on existing training programs for remediating fine motor impairments in children with ADHD and to assess their effectiveness. Methods The scoping review followed the PRISMA-ScR guidelines. In March 2020, PsycINFO, MEDLINE (PubMed), Web of Science, Google Scholar and The Cochrane Database of Systematic Reviews were searched for evidence. The eligibility criteria and the data charting process followed the PICO framework, complemented by study design. The investigated population included children with a formal ADHD diagnosis (either subtype) or elevated ADHD symptoms aged between 4 and 12 years, both on and off medication. All training interventions aiming at improving fine motor skills, having a fine motor component or fine motor improvements as a secondary outcome were assessed for eligibility; no comparators were specified. Results Twelve articles were included in the final report, comprising observational and experimental studies as well as a review. Both offline and online or virtual training interventions were reported, often accompanied by physical activity and supplemented by training sessions at home. The training programs varied in length and intensity, but generally comprised several weeks and single or multiple training sessions per week. All interventions including more than one session were effective in the treatment of fine motor deficiencies in children with ADHD and had a wide range of additional positive outcomes. The effects could be maintained at follow-up. Conclusions Fine motor training in children with ADHD can be very effective and multiple approaches including specific fine motor and cognitive training components, some kind of physical activity, feedback mechanisms, or multimodal treatments can be successful. Training programs need to be tailored to the specific characteristics of the ADHD population. A mHealth approach using serious games could be promising in this context due to its strong motivational components.


2021 ◽  
Author(s):  
Jordan Morrison-Ham ◽  
Gillian M Clark ◽  
Elizabeth G Ellis ◽  
Andris Cerins ◽  
Juho Joutsa ◽  
...  

Background. Deep brain stimulation is a highly effective treatment of dystonia, but is invasive and associated with risks, such as intraoperative bleeding and infections. Previous research has used non-invasive brain stimulation (NIBS) in an attempt to alleviate symptoms of dystonia. The results of these studies, however, have been variable, leaving efficacy unclear. This study aimed to evaluate the effects of NIBS on symptoms of dystonia and determine whether methodological characteristics are associated with variability in effect size. Methods. Embase and MEDLINE Complete databases were searched for articles using any type of NIBS as an intervention in dystonia patients, with changes in dystonia symptoms the primary outcome of interest. Results. Meta-analysis of 26 studies demonstrated a small effect size for NIBS in reducing symptoms of dystonia (random-effects Hedges' g = 0.21, p = .002). Differences in the type of NIBS, type of dystonia, and brain region stimulated had a significant effect on dystonia symptoms. Meta-regression revealed that 10 sessions of active stimulation, and the application of concurrent motor training programs resulted in significantly larger mean effect sizes. Conclusion. NIBS has yielded small improvements to dystonic symptoms, but effect sizes depended on methodological characteristics, with more sessions of stimulation producing a larger response. Future research should further investigate the application of NIBS parallel to motor training, in addition to providing a greater quantity of sessions, to help define optimal parameters for NIBS protocols in dystonia. Registration. PROSPERO 2020, CRD42020175944


2021 ◽  
Author(s):  
Pika Krištof Mirt ◽  
Vojko Strojnik ◽  
Gregor Kavčič ◽  
Rihard Trebše

Abstract BackgroundTotal hip arthroplasty (THA) is very effective in alleviating pain, but functional deficits persist up to a year following surgery. Regardless of standard physiotherapy programs, significant additional muscular atrophy and weakness occurs. Deficits in strength have serious adverse consequences for these patients with respect to physical function, the maintenance of independence and the requirement for revision surgery. Progressive resistance training in rehabilitation following THA has been shown to significantly enhance muscle strength and function. The fundamental principle is to progressively overload the exercised muscle as it becomes stronger. Different strength training protocols have been used at different times in the postoperative phase, in group or individual practices, with major differences being in center-based and home-based programs with or without supervision. The primary objectives of our study are to evaluate whether an early postoperative home-based strength training protocol is feasible for all elective THA patients, does not cause major adverse effects and can improve patient functional outcomes at 3 months and 1 year following surgery.Methods/DesignThis study is a prospective multicenter randomized clinical trial to be conducted in the orthopedic departments of two Slovenian hospitals. In each hospital, 124 patients aged 60 or older with unilateral osteoarthritis, an ASA score between 1 and 3, signed informed consent form, and no terminal illness disabling rehabilitation participation will be randomly assigned to the intervention or control group. THA with an anterior approach will be performed. All patients will receive current standard physiotherapy during hospitalization. Patients in the intervention group will also learn strength and sensory-motor training exercises. Upon discharge all will receive USB drives with exercise videos, written exercise instructions and a training diary. Physiotherapists will perform the assessments (physical tests and the maximal voluntary isometric contraction assessment), and patients will fill out outcome assessment questionnaires (the Harris Hip Score and 36-Item Short Form Health Survey) at baseline and 1, 3 and 12 months after surgery.DiscussionThe main purpose of our study is to design a new standardized rehabilitation protocol with videos that will be effective, safe and accessible to all Slovenian THA patients.Trial registrationClinicalTrials.gov ID: NCT04061993. Protocol ID: PRT_PhD. Record Verification April 2021. https://clinicaltrials.gov/ct2/show/NCT04061993


Sign in / Sign up

Export Citation Format

Share Document