Molecular characterization and genetic diversity analysis of Jatropha curcas L. in India using RAPD and AFLP analysis

2009 ◽  
Vol 37 (5) ◽  
pp. 2249-2257 ◽  
Author(s):  
D. V. N. Sudheer Pamidimarri ◽  
Shaik G. Mastan ◽  
Hifzur Rahman ◽  
Muppala P. Reddy
2008 ◽  
Vol 7 (02) ◽  
pp. 122-126 ◽  
Author(s):  
Rouxlene Coetzee ◽  
Liezel Herselman ◽  
Maryke T. Labuschagne

Nineteen kenaf genotypes from Cuba, Taiwan, the USA, El Salvador, Guatemala, Russia, Spain and Indonesia, and three wild types collected in South Africa were analysed for genetic diversity using AFLP analysis. All could be uniquely distinguished from one another, but only a low level of genetic diversity was present. The most distinct accession, Guatemala 4, was 85% similar to all other accessions. The accessions clustered more or less according to known pedigree and/or origin. Two of the three wild types (Hibiscus cannabinusc andH. cannabinusa) clustered separately from the commercial and Russian accessions. One of the wild types,H. cannabinusb clustered with some of the commercial accessions. Commercial accessions in the first subgroup all originated from central and North America, and surrounding islands (Cuba and El Salvador). The Russian accessions are all grouped together. The second subgroup was the only group that contained accessions from different geographical origins.


2015 ◽  
Vol 80 ◽  
pp. 316-320 ◽  
Author(s):  
Franciele Pioto ◽  
Renan Souza Costa ◽  
Suzelei Castro França ◽  
Eduardo Antonio Gavioli ◽  
Bianca Waléria Bertoni ◽  
...  

2011 ◽  
Vol 7 (1) ◽  
pp. 47 ◽  
Author(s):  
Dani Satyawan ◽  
I Made Tasma

<p>Genetic Diversity Analysis of Jatropha Curcas<br />Provenances Using Randomly Amplified Polymorphic<br />DNA Markers. Dani Satyawan and I Made Tasma.<br />Jatropha curcas nuts are rich in oil that is higly suitable for<br />Hak Cipta © 2011, BB-Biogen<br />the production of bio-diesel or to be used directly in<br />modified diesel engines. The objective of this study was to<br />assess the extent of genetic diversity among 50 J. curcas<br />provenances and one accession of J. integerrima using<br />RAPD markers. The fifty J. curcas provenances were<br />collected from ecologically diverse regions of Indonesia, and<br />planted in the Pakuwon Experimental Station (Sukabumi,<br />West Java). Fourteen RAPD primers with 60-80% G+C<br />content were used in this genetic diversity analysis and<br />produced 64 bands with 95.7% polymorphism level. The<br />Polymerase Chain Reactions used to generate the RAPD<br />bands sometimes produced inconsistent and nonreproducible<br />results, necessitating the duplication of each<br />reaction to prevent scoring errors. Sixty one validated bands<br />were subsequently used for genetic diversity analysis using<br />Unweighted Pair Group Method Arithmetic (UPGMA)<br />method and Dice coefficients. It was shown that the<br />similarity coefficients among the provenances ranged from<br />0.2 to 0.98 with an average similarity of 0.75. Dendrogram<br />analysis produced two major groups of provenances, with<br />one outlier from South Lampung. There was no tendency for<br />provenances originated from nearby regions to cluster<br />together in each group, and several provenances showed<br />more similarities with provenances originated from distant<br />regions. This pattern lent credence to reports that Jatropha<br />was introduced to Indonesia around four centuries ago and<br />was mainly spread by humans. Based on the mean<br />similarities among the accessions and their clustering<br />pattern, the genetic diversity of the Jatropha collection<br />appeared to be fairly low. Future additions of genetic<br />materials from more diverse genetic background will be<br />necessary to maintain the current progress of Jatropha<br />improvement program.</p>


Sign in / Sign up

Export Citation Format

Share Document