scholarly journals The management of bone defect using long non-coding RNA as a potential biomarker for regulating the osteogenic differentiation process

Author(s):  
Jia-lin Liu ◽  
Yan-shi Liu ◽  
Mei-jie Zheng ◽  
Hui-yu He

AbstractTissue engineered bone brings hope to the treatment of bone defects, and the osteogenic differentiation of stem cells is the key link. Inducing osteogenic differentiation of stem cells may be a potential approach to promote bone regeneration. In recent years, lncRNA has been studied in the field increasingly, which is believed can regulate cell cycle, proliferation, metastasis, differentiation and immunity, participating in a variety of physiology and pathology processes. At present, it has been confirmed that certain lncRNAs regulate the osteogenesis of stem cells and take part in mediating signaling pathways including Wnt/β-catenin, MAPK, TGF-β/BMP, and Notch pathways. Here, we provided an overview of lncRNA, reviewed its researches in the osteogenic differentiation of stem cells, emphasized the importance of lncRNA in bone regeneration, and focused on the roles of lncRNA in signaling pathways, in order to make adequate preparations for applying lncRNA to bone tissue Engineering, letting it regulate the osteogenic differentiation of stem cells for bone regeneration.

2017 ◽  
Vol 445 (1-2) ◽  
pp. 59-65 ◽  
Author(s):  
Xiaobo Feng ◽  
Tao Lin ◽  
Xianzhe Liu ◽  
Cao Yang ◽  
Shuhua Yang ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11251
Author(s):  
Zhaowei Teng ◽  
Yun Zhu ◽  
Qinggang Hao ◽  
Xiaochao Yu ◽  
Yirong Teng ◽  
...  

Background With aging, an imbalance in bone remodeling leading to increased bone resorption and decreased bone formation is thought to contribute to osteoporosis. Osteoblastic differentiation of bone marrow mesenchymal stem cells (BMMSCs) plays a vital role in the pathogenesis of osteoporosis. However, the detailed molecular mechanisms of osteoporosis remain incompletely understood. Given that long non-coding RNA taurine upregulated gene 1 (lnc TUG1) plays a critical role in the osteogenic differentiation, and microRNA-23b (miR-23b) as a putative sponge for lnc TUG1 has upregulated expression in osteoporosis. Therefore, this study investigated the roles of TUG1/miR-23b in osteoporotic pathology. Material and Methods TUG1 and miR-23b expression in the plasma of osteoporotic patients were evaluated by quantitative real-time PCR (qRT-PCR). The osteogenic differentiation in human BMMSCs was evaluated by qRT-PCR, western blot, Alizarin red staining after knockdown of TUG1 by small interfering RNA (siRNA) treatment. Results Decreased expression of TUG1 and increased expression of miR-23b evident in the plasma of patients with osteoporosis than in that of age- and sex-matched healthy controls. Additionally, increased miR-23b expression inhibited runt-related transcription factor 2 (RUNX2), osteocalcin, and osteopontin expression and reduced calcified nodule formation based on the results of qRT-PCR, western blot, and Alizarin Red S staining. Conclusion The study for the first time reported that silence of lncRNA TUG1 significantly suppressed the osteogenic differentiation of BMMSCs possibly by targeting the miR-23b/RUNX2 signaling pathway. This mechanism of TUG1/miR-23b/RUNX2 signaling within the osteogenic differentiation of BMMSCs might provide new insight for the development of lncRNA-directed diagnostic and therapeutic strategies for osteoporosis.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Liang Wang ◽  
Lei Qi

Abstract Background In recent years, H19, as one of the most well-known long non-coding RNA, has been reported to play important roles in many biological and physiological processes. H19 has been identified to regulate the osteogenic differentiation of various stem cells in many studies. However, the detailed role and regulation mechanism of H19 was not consistent in the reported studies. Main body of the manuscript In this review article we summarized the effect and mechanism of lncRNA H19 on osteogenic differentiation of various stem cells reported in the published literatures. The role and mechanism of H19, H19 expression changes, effect of H19 on cell proliferation in osteogenic differentiation were respectively reviewed. Conclusions An increasing number of studies have provided evidence that H19 play its role in the regulation of stem cell osteogenic differentiation by different mechanisms. Most of the studies favored the positive regulatory effect of H19 through lncRNA-miRNA pathway. The function and underlying mechanisms by which H19 contributes to osteogenic differentiation require further investigation.


Sign in / Sign up

Export Citation Format

Share Document