Algebraic Traveling Wave Solutions of a Non-local Hydrodynamic-type Model

2014 ◽  
Vol 17 (3-4) ◽  
pp. 465-482 ◽  
Author(s):  
Aiyong Chen ◽  
Wenjing Zhu ◽  
Zhijun Qiao ◽  
Wentao Huang
Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1999
Author(s):  
Hongpeng Guo ◽  
Zhiming Guo

This paper deals with the existence of traveling wave solutions to a delayed temporally discrete non-local reaction diffusion equation model, which has been derived recently for a single species with age structure. When the birth function satisfies monotonic condition, we obtained the traveling wavefront by using upper and lower solution methods together with monotonic iteration techniques. Otherwise, without the monotonicity assumption for birth function, we constructed two auxiliary equations. By means of the traveling wavefronts of the auxiliary equations, using the Schauder’ fixed point theorem, we proved the existence of a traveling wave solution to the equation under consideration with speed c>c*, where c*>0 is some constant. We found that the delayed temporally discrete non-local reaction diffusion equation possesses the dynamical consistency with its time continuous counterpart at least in the sense of the existence of traveling wave solutions.


2013 ◽  
Author(s):  
V. M. Vassilev ◽  
P. A. Djondjorov ◽  
M. Ts. Hadzhilazova ◽  
I. M. Mladenov

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 224
Author(s):  
Ghaylen Laouini ◽  
Amr M. Amin ◽  
Mohamed Moustafa

A comprehensive study of the negative-order Kadomtsev–Petviashvili (nKP) partial differential equation by Lie group method has been presented. Initially the infinitesimal generators and symmetry reduction, which were obtained by applying the Lie group method on the negative-order Kadomtsev–Petviashvili equation, have been used for constructing the reduced equations. In particular, the traveling wave solutions for the negative-order KP equation have been derived from the reduced equations as an invariant solution. Finally, the extended improved (G′/G) method and the extended tanh method are described and applied in constructing new explicit expressions for the traveling wave solutions. Many new and more general exact solutions are obtained.


Sign in / Sign up

Export Citation Format

Share Document