scholarly journals Fundamental solutions and Hadamard states for a scalar field with arbitrary boundary conditions on an asymptotically AdS spacetimes

2021 ◽  
Vol 24 (3) ◽  
Author(s):  
Claudio Dappiaggi ◽  
Alessio Marta

AbstractWe consider the Klein-Gordon operator on an n-dimensional asymptotically anti-de Sitter spacetime (M,g) together with arbitrary boundary conditions encoded by a self-adjoint pseudodifferential operator on ∂M of order up to 2. Using techniques from b-calculus and a propagation of singularities theorem, we prove that there exist advanced and retarded fundamental solutions, characterizing in addition their structural and microlocal properties. We apply this result to the problem of constructing Hadamard two-point distributions. These are bi-distributions which are weak bi-solutions of the underlying equations of motion with a prescribed form of their wavefront set and whose anti-symmetric part is proportional to the difference between the advanced and the retarded fundamental solutions. In particular, under a suitable restriction of the class of admissible boundary conditions and setting to zero the mass, we prove their existence extending to the case under scrutiny a deformation argument which is typically used on globally hyperbolic spacetimes with empty boundary.

Author(s):  
Oran Gannot ◽  
Michał Wrochna

We consider the Klein–Gordon equation on asymptotically anti-de-Sitter spacetimes subject to Neumann or Robin (or Dirichlet) boundary conditions and prove propagation of singularities along generalized broken bicharacteristics. The result is formulated in terms of conormal regularity relative to a twisted Sobolev space. We use this to show the uniqueness, modulo regularizing terms, of parametrices with prescribed $\text{b}$ -wavefront set. Furthermore, in the context of quantum fields, we show a similar result for two-point functions satisfying a holographic Hadamard condition on the $\text{b}$ -wavefront set.


2016 ◽  
Vol 2016 ◽  
pp. 1-30 ◽  
Author(s):  
Dongyan Shi ◽  
Yunke Zhao ◽  
Qingshan Wang ◽  
Xiaoyan Teng ◽  
Fuzhen Pang

This paper presents free vibration analysis of open and closed shells with arbitrary boundary conditions using a spectro-geometric-Ritz method. In this method, regardless of the boundary conditions, each of the displacement components of open and closed shells is represented simultaneously as a standard Fourier cosine series and several auxiliary functions. The auxiliary functions are introduced to accelerate the convergence of the series expansion and eliminate all the relevant discontinuities with the displacement and its derivatives at the boundaries. The boundary conditions are modeled using the spring stiffness technique. All the expansion coefficients are treated equally and independently as the generalized coordinates and determined using Rayleigh-Ritz method. By using this method, a unified vibration analysis model for the open and closed shells with arbitrary boundary conditions can be established without the need of changing either the equations of motion or the expression of the displacement components. The reliability and accuracy of the proposed method are validated with the FEM results and those from the literature.


2021 ◽  
pp. 109963622110204
Author(s):  
Xue-Yang Miao ◽  
Chao-Feng Li ◽  
Yu-Lin Jiang ◽  
Zi-Xuan Zhang

In this paper, a unified method is developed to analyze free vibrations of the three-layer functionally graded cylindrical shell with non-uniform thickness. The middle layer is composed of two-dimensional functionally gradient materials (2D-FGMs), whose thickness is set as a function of smooth continuity. Four sets of artificial springs are assigned at the ends of the shells to satisfy the arbitrary boundary conditions. The Sanders’ shell theory is used to obtain the strain and curvature-displacement relations. Furthermore, the Chebyshev polynomials are selected as the admissible function to improve computational efficiency, and the equation of motion is derived by the Rayleigh–Ritz method. The effects of spring stiffness, volume fraction indexes, configuration on of shell, and the change in thickness of the middle layer on the modal characteristics of the new structural shell are also analyzed.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Huimin Liu ◽  
Fanming Liu ◽  
Xin Jing ◽  
Zhenpeng Wang ◽  
Linlin Xia

This paper presents the first known vibration characteristic of rectangular thick plates on Pasternak foundation with arbitrary boundary conditions on the basis of the three-dimensional elasticity theory. The arbitrary boundary conditions are obtained by laying out three types of linear springs on all edges. The modified Fourier series are chosen as the basis functions of the admissible function of the thick plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges. The exact solution is obtained based on the Rayleigh–Ritz procedure by the energy functions of the thick plate. The excellent accuracy and reliability of current solutions are demonstrated by numerical examples and comparisons with the results available in the literature. In addition, the influence of the foundation coefficients as well as the boundary restraint parameters is also analyzed, which can serve as the benchmark data for the future research technique.


Sign in / Sign up

Export Citation Format

Share Document