A new combination active contour model for segmenting texture image with low contrast and high illumination variations

2017 ◽  
Vol 77 (15) ◽  
pp. 20021-20042
Author(s):  
Alireza Vard
2015 ◽  
Vol 781 ◽  
pp. 511-514
Author(s):  
Tanunchai Boonnuk ◽  
Sanun Srisuk ◽  
Thanwa Sripramong

In this paper, we propose effective method for texture segmentation using active contour model with edge flow vector. This technique was applied from previous active contour model that uses gradient vector flow as external force. It was observed that our method provided better results for texture segmentation while a traditional active contour model and active contour model with gradient vector flow were not capable to be used with texture image. Thus, texture image such as medical imaging can be identified using active contour model with edge flow vector.


2011 ◽  
Author(s):  
Guan-nan Chen ◽  
Dan-Er Xu ◽  
Heng-yang Hu ◽  
Rong Chen ◽  
Zu-fang Huang ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yin Wang ◽  
Han Jiang

We present a nonparametric shape constrained algorithm for segmentation of coronary arteries in computed tomography images within the framework of active contours. An adaptive scale selection scheme, based on the global histogram information of the image data, is employed to determine the appropriate window size for each point on the active contour, which improves the performance of the active contour model in the low contrast local image regions. The possible leakage, which cannot be identified by using intensity features alone, is reduced through the application of the proposed shape constraint, where the shape of circular sampled intensity profile is used to evaluate the likelihood of current segmentation being considered vascular structures. Experiments on both synthetic and clinical datasets have demonstrated the efficiency and robustness of the proposed method. The results on clinical datasets have shown that the proposed approach is capable of extracting more detailed coronary vessels with subvoxel accuracy.


2021 ◽  
pp. 114811
Author(s):  
Aditi Joshi ◽  
Mohammed Saquib Khan ◽  
Asim Niaz ◽  
Farhan Akram ◽  
Hyun Chul Song ◽  
...  

2021 ◽  
pp. 1-19
Author(s):  
Maria Tamoor ◽  
Irfan Younas

Medical image segmentation is a key step to assist diagnosis of several diseases, and accuracy of a segmentation method is important for further treatments of different diseases. Different medical imaging modalities have different challenges such as intensity inhomogeneity, noise, low contrast, and ill-defined boundaries, which make automated segmentation a difficult task. To handle these issues, we propose a new fully automated method for medical image segmentation, which utilizes the advantages of thresholding and an active contour model. In this study, a Harris Hawks optimizer is applied to determine the optimal thresholding value, which is used to obtain the initial contour for segmentation. The obtained contour is further refined by using a spatially varying Gaussian kernel in the active contour model. The proposed method is then validated using a standard skin dataset (ISBI 2016), which consists of variable-sized lesions and different challenging artifacts, and a standard cardiac magnetic resonance dataset (ACDC, MICCAI 2017) with a wide spectrum of normal hearts, congenital heart diseases, and cardiac dysfunction. Experimental results show that the proposed method can effectively segment the region of interest and produce superior segmentation results for skin (overall Dice Score 0.90) and cardiac dataset (overall Dice Score 0.93), as compared to other state-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document