Automatic segmentation of optic disc in retinal fundus images using semi-supervised deep learning

Author(s):  
Shaleen Bengani ◽  
Angel Arul Jothi J. ◽  
Vadivel S.
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Muhammad Naseer Bajwa ◽  
Muhammad Imran Malik ◽  
Shoaib Ahmed Siddiqui ◽  
Andreas Dengel ◽  
Faisal Shafait ◽  
...  

Author(s):  
Muhammad Naseer Bajwa ◽  
Muhammad Imran Malik ◽  
Shoaib Ahmed Siddiqui ◽  
Andreas Dengel ◽  
Faisal Shafait ◽  
...  

2020 ◽  
Vol 10 (11) ◽  
pp. 3833 ◽  
Author(s):  
Haidar Almubarak ◽  
Yakoub Bazi ◽  
Naif Alajlan

In this paper, we propose a method for localizing the optic nerve head and segmenting the optic disc/cup in retinal fundus images. The approach is based on a simple two-stage Mask-RCNN compared to sophisticated methods that represent the state-of-the-art in the literature. In the first stage, we detect and crop around the optic nerve head then feed the cropped image as input for the second stage. The second stage network is trained using a weighted loss to produce the final segmentation. To further improve the detection in the first stage, we propose a new fine-tuning strategy by combining the cropping output of the first stage with the original training image to train a new detection network using different scales for the region proposal network anchors. We evaluate the method on Retinal Fundus Images for Glaucoma Analysis (REFUGE), Magrabi, and MESSIDOR datasets. We used the REFUGE training subset to train the models in the proposed method. Our method achieved 0.0430 mean absolute error in the vertical cup-to-disc ratio (MAE vCDR) on the REFUGE test set compared to 0.0414 obtained using complex and multiple ensemble networks methods. The models trained with the proposed method transfer well to datasets outside REFUGE, achieving a MAE vCDR of 0.0785 and 0.077 on MESSIDOR and Magrabi datasets, respectively, without being retrained. In terms of detection accuracy, the proposed new fine-tuning strategy improved the detection rate from 96.7% to 98.04% on MESSIDOR and from 93.6% to 100% on Magrabi datasets compared to the reported detection rates in the literature.


Author(s):  
Mohammad Shorfuzzaman ◽  
M. Shamim Hossain ◽  
Abdulmotaleb El Saddik

Diabetic retinopathy (DR) is one of the most common causes of vision loss in people who have diabetes for a prolonged period. Convolutional neural networks (CNNs) have become increasingly popular for computer-aided DR diagnosis using retinal fundus images. While these CNNs are highly reliable, their lack of sufficient explainability prevents them from being widely used in medical practice. In this article, we propose a novel explainable deep learning ensemble model where weights from different models are fused into a single model to extract salient features from various retinal lesions found on fundus images. The extracted features are then fed to a custom classifier for the final diagnosis of DR severity level. The model is trained on an APTOS dataset containing retinal fundus images of various DR grades using a cyclical learning rates strategy with an automatic learning rate finder for decaying the learning rate to improve model accuracy. We develop an explainability approach by leveraging gradient-weighted class activation mapping and shapely adaptive explanations to highlight the areas of fundus images that are most indicative of different DR stages. This allows ophthalmologists to view our model's decision in a way that they can understand. Evaluation results using three different datasets (APTOS, MESSIDOR, IDRiD) show the effectiveness of our model, achieving superior classification rates with a high degree of precision (0.970), sensitivity (0.980), and AUC (0.978). We believe that the proposed model, which jointly offers state-of-the-art diagnosis performance and explainability, will address the black-box nature of deep CNN models in robust detection of DR grading.


Sign in / Sign up

Export Citation Format

Share Document