Time-dependent three-dimensional quasi-static analysis of a viscoelastic solid by defining a time function

Author(s):  
Mohammad Eskandari ◽  
Nasrin Jafari ◽  
Mojtaba Azhari
Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


2004 ◽  
Vol 127 (3) ◽  
pp. 400-415 ◽  
Author(s):  
Amador M. Guzmán ◽  
Rodrigo A. Escobar ◽  
Cristina H. Amon

Computational investigations of flow mixing and oxygen transfer characteristics in an intravenous membrane oxygenator (IMO) are performed by direct numerical simulations of the conservation of mass, momentum, and species equations. Three-dimensional computational models are developed to investigate flow-mixing and oxygen-transfer characteristics for stationary and pulsating balloons, using the spectral element method. For a stationary balloon, the effect of the fiber placement within the fiber bundle and the number of fiber rings is investigated. In a pulsating balloon, the flow mixing characteristics are determined and the oxygen transfer rate is evaluated. For a stationary balloon, numerical simulations show two well-defined flow patterns that depend on the region of the IMO device. Successive increases of the Reynolds number raise the longitudinal velocity without creating secondary flow. This characteristic is not affected by staggered or non-staggered fiber placement within the fiber bundle. For a pulsating balloon, the flow mixing is enhanced by generating a three-dimensional time-dependent flow characterized by oscillatory radial, pulsatile longitudinal, and both oscillatory and random tangential velocities. This three-dimensional flow increases the flow mixing due to an active time-dependent secondary flow, particularly around the fibers. Analytical models show the fiber bundle placement effect on the pressure gradient and flow pattern. The oxygen transport from the fiber surface to the mean flow is due to a dominant radial diffusion mechanism, for the stationary balloon. The oxygen transfer rate reaches an asymptotic behavior at relatively low Reynolds numbers. For a pulsating balloon, the time-dependent oxygen-concentration field resembles the oscillatory and wavy nature of the time-dependent flow. Sherwood number evaluations demonstrate that balloon pulsations enhance the oxygen transfer rate, even for smaller flow rates.


2002 ◽  
Vol 450 ◽  
pp. 67-95 ◽  
Author(s):  
CH. BLOHM ◽  
H. C. KUHLMANN

The incompressible fluid flow in a rectangular container driven by two facing sidewalls which move steadily in anti-parallel directions is investigated experimentally for Reynolds numbers up to 1200. The moving sidewalls are realized by two rotating cylinders of large radii tightly closing the cavity. The distance between the moving walls relative to the height of the cavity (aspect ratio) is Γ = 1.96. Laser-Doppler and hot-film techniques are employed to measure steady and time-dependent vortex flows. Beyond a first threshold robust, steady, three-dimensional cells bifurcate supercritically out of the basic flow state. Through a further instability the cellular flow becomes unstable to oscillations in the form of standing waves with the same wavelength as the underlying cellular flow. If both sidewalls move with the same velocity (symmetrical driving), the oscillatory instability is found to be tricritical. The dependence on two sidewall Reynolds numbers of the ranges of existence of steady and oscillatory cellular flows is explored. Flow symmetries and quantitative velocity measurements are presented for representative cases.


1988 ◽  
Vol 187 ◽  
pp. 487-506 ◽  
Author(s):  
I. P. Castro ◽  
W. H. Snyder

In this paper experimental measurements of the time-dependent velocity and density perturbations upstream of obstacles towed through linearly stratified fluid are presented. Attention is concentrated on two-dimensional obstacles which generate turbulent separated wakes at Froude numbers, based on velocity and body height, of less than 0.5. The form of the upstream columnar modes is shown to be largely that of first-order unattenuating disturbances, which have little resemblance to the perturbations described by small-obstacle-height theories. For two-dimensional obstacles the disturbances are similar to those found by Wei, Kao & Pao (1975) and it is shown that provided a suitable obstacle drag coefficient is specified, the lowest-order modes (at least) are quantitatively consistent with the results of the Oseen inviscid model.Discussion of some results of similar measurements upstream of three-dimensional obstacles, the importance of towing tank endwalls and the relevance of the Foster & Saffman (1970) theory for the limit of zero Froude number is also included.


2000 ◽  
Author(s):  
Jeffrey J. Derby ◽  
Andrew Yeckel

Abstract Modern finite element methods implemented on parallel supercomputers promise to allow the study of three-dimensional, time-dependent continuum phenomena in many engineering systems. This paper shows several examples of the fruitful application of these approaches to bulk crystal growth systems, where strongly nonlinear coupled phenomena are important.


Sign in / Sign up

Export Citation Format

Share Document