surface emitting lasers
Recently Published Documents





Philippe Martin Tingzon ◽  
Horace Andrew Husay ◽  
Neil Irvin Cabello ◽  
John Jairus Eslit ◽  
Kevin Cook ◽  

Abstract We employ micro-Raman spectroscopy to optically infer the stress experienced by the legs of a bridge-type microelectromechanical systems (MEMS) used in high contrast gratings tunable vertical cavity surface emitting lasers (VCSELs). We then employ micro-photoluminescence (PL) spectroscopy to indirectly measure the air cavity displacement of the same MEMS structure. Results from micro-Raman show that electrostatically actuating the MEMS with a DC bias configuration yields increasing residual stress on the endpoints of the MEMS with values reaching up to 0.8 GPa. We simulated a finite element model via Comsol Multiphysics which agrees with the trend we observe based on our micro-Raman data. Our micro-photoluminescence (PL) spectroscopy showed that change in the air cavity of the VCSEL structure results in a change in the full width of the PL peak emitted by the layer consisting of 4 pairs of Distributed Bragg Reflectors (DBRs). The change in the full width of the PL peak was due to the change in the optical cavity induced by displacing the MEMS via externally applied bias and agrees with our transfer matrix convolution simulation. These optical characterization tools can be used for failure analysis, MEMS design improvements, and monitoring of MEMS tunable VCSEL devices for mass production and manufacturing.

2022 ◽  
Vol 12 (1) ◽  
Hai-Han Lu ◽  
Chung-Yi Li ◽  
Wen-Shing Tsai ◽  
Poh-Suan Chang ◽  
Yan-Yu Lin ◽  

AbstractA two-way 224-Gbit/s four-level pulse amplitude modulation (PAM4)-based fibre-free-space optical (FSO) converged system through a 25-km single-mode fibre (SMF) transport with 500-m free-space transmission is successfully constructed, which adopts injection-locked vertical-cavity surface-emitting lasers with polarisation-multiplexing mechanism for a demonstration. Compared with one-way transmission, two-way transmission is an attractive architecture for fibre-FSO converged system. Two-way transmission over SMF transport with free-space transmission not only reduces the required number of fibres and the setups of free-space transmission, but also provides the advantage of capacity doubling. Incorporating dual-wavelength four-level pulse amplitude modulation (PAM4) modulation with polarisation-multiplexing mechanism, the transmission capacity of fibre-FSO converged system is significantly enhanced to 224 Gbit/s (56 Gbit/s PAM4/wavelength × 2-wavelength × 2-polarisation) for downlink/uplink transmission. Bit error rate and PAM4 eye diagrams (downstream/upstream) perform well over 25-km SMF transport with 500-m free-space transmission. This proposed two-way fibre-FSO converged system is a prominent one not only because of its development in the integration of fibre backbone with optical wireless extension, but also because of its advantage in two-way transmission for affording high downlink/uplink data rate with good transmission performance.

Jiawei chen ◽  
yudong li ◽  
Heini Maliya ◽  
Bingkai Liu ◽  
Qi Guo ◽  

Abstract The displacement damage effects of vertical-cavity surface-emitting lasers (VCSELs) irradiated by 3 and 10 MeV protons in the range of Ф = 6.7×1012 p/cm2 to Ф = 1.6×1014 p/cm2 were investigated. The threshold current exhibited consistent degradation at the same displacement damage dose, as did the series resistance. Additionally, the external quantum efficiencies of 850 and 680 nm VCSELs were degraded by 2% and 21%, respectively. Further, the threshold current of the 850 nm VCSEL was restored by 14% after annealing at 20 mA, which is remarkably higher than that achieved by annealing only at high temperatures. These results support the applicability of VCSELs to both data communication and instrumentation applications in harsh radiation environments.

2021 ◽  
pp. 105164
Qifa Liu ◽  
Jingtong Bin ◽  
Kerui Feng ◽  
Lu Cheng ◽  
Lianjie Zhao ◽  

2021 ◽  
Vol 2103 (1) ◽  
pp. 012176
S S Rochas ◽  
L Karachinsky Ya ◽  
A V Babichev ◽  
I I Novikov ◽  
A G Gladyshev ◽  

Abstract Vertical-cavity surface-emitting lasers of 1.3 μm spectral range with the active region based on the InGaAs/InGaAlAs superlattice were studied. VCSEL heterostructure was formed by a wafer-fusion of the heterostructure with an active region and two DBRs grown by molecular-beam epitaxy on InP and GaAs substrates respectively. Fabricated VCSELs have shown threshold current below 1.6 mA and frequency of small signal modulation near 9 GHz at 20°C.

2021 ◽  
Vol 2052 (1) ◽  
pp. 012051
K O Voropaev ◽  
V A Grebennikov ◽  
A V Zhelannov ◽  
A Yu Prokhorov ◽  
B I Seleznev

Abstract A study of the technology of selective oxidation of the buried AlGaAs layer used as an aperture layer in the structure of a Vertical-cavity surface-emitting laser has been carried out. Oxidation process was made as thermal oxidating in a humidified nitrogen atmosphere. The conditions of the oxidation process are described, images of the oxidation results and the dependence of the growth rate of the oxidized layer on the process temperature are presented. A technology for the formation of an oxide current aperture has been developed for vertical cavity surface emitting lasers with a generation wavelength of 850 nm, which makes it possible to accurately control the size and shape of the resulting aperture.

2021 ◽  
Hermann Kahle ◽  
Hoy-My Phung ◽  
Philipp Tatar-Mathes ◽  
Patrik Rajala ◽  
Mircea Guina

Sign in / Sign up

Export Citation Format

Share Document