Constructing Cu2O@Ni-Al LDH core-shell structure for high performance supercapacitor electrode material

2019 ◽  
Vol 21 (10) ◽  
Author(s):  
Jiale Chen ◽  
Huili Liu ◽  
Xiaohan Wan ◽  
Yanchun Xue ◽  
Junhao Zhang ◽  
...  
2021 ◽  
Author(s):  
Yinan Yuan ◽  
Henan Jia ◽  
Zhaoyuan Liu ◽  
Lidong Wang ◽  
J. Sheng ◽  
...  

The design of microstructures and the optimum selection of electrode materials have substantial effects on the electrochemical performances for supercapacitors. A core-shell structured CuCo2S4@Ni(OH)2 electrode material was designed, in which...


2017 ◽  
Vol 10 (05) ◽  
pp. 1750056 ◽  
Author(s):  
Huiping Shao ◽  
Jiangcong Qi ◽  
Tao Lin ◽  
Yuling Zhou ◽  
Fucheng Yu

The core–shell structure composite magnetic nanoparticles (NPs), Fe3O4@chitosan@nimodipine (Fe3O4@CS@NMDP), were successfully synthesized by a chemical cross-linking method in this paper. NMDP is widely used for cardiovascular and cerebrovascular disease prevention and treatment, while CS is of biocompatibility. The composite particles were characterized by an X-ray diffractometer (XRD), a Fourier transform infrared spectroscopy (FT-IR), a transmission electron microscopy (TEM), a vibrating sample magnetometers (VSM) and a high performance liquid chromatography (HPLC). The results show that the size of the core–shell structure composite particles is ranging from 12[Formula: see text]nm to 20[Formula: see text]nm and the coating thickness of NMDP is about 2[Formula: see text]nm. The saturation magnetization of core–shell composite NPs is 46.7[Formula: see text]emu/g, which indicates a good potential application for treating cancer by magnetic target delivery. The release percentage of the NMDP can reach 57.6% in a short time of 20[Formula: see text]min in the PBS, and to 100% in a time of 60[Formula: see text]min, which indicates the availability of Fe3O4@CS@NMDP composite NPs for targeting delivery treatment.


Sign in / Sign up

Export Citation Format

Share Document