Drought responses of an exotic tree (Eriobotrya japonica) in a tropical cloud forest suggest the potential to become an invasive species

New Forests ◽  
2021 ◽  
Author(s):  
Guadalupe Williams-Linera ◽  
Z. Carter Berry ◽  
Milton H. Díaz-Toribio ◽  
Ximena Espejel-Ontiveros
2018 ◽  
Vol 2 (2) ◽  
pp. 63-70 ◽  
Author(s):  
R. Obour

Broussonetia papyrifera is an exotic tree widely grown for paper production. Due to its prolific regeneration it has invaded forestcanopy gaps and degraded farmlands and has now become an invasive species in Ghana. In enhancing its value for use the plantwas evaluated as potential forage for grazing animals vis-à-vis other two existing forage plants: Ficus exasperata and Leucaenaleucocephala.The study assessed the palatability and preference of Broussonetia papyrifera using sheep and goats for the wet anddry seasons.The species were assessed in indoor pen feeding trials using eight-unit (3×3 m) pens with the cafeteria method.The amount of forage offered was 100g (fresh material) in all instances for each species and for ten minutes. Adesign basedon 3×2×2 factorial in Randomized Complete Block Design (RCBD) was used to test the differences in palatability betweenthe three forage species.Results revealed that palatability was higher (P<0.05) in Leucaena leucocephala compared with Ficusexasperata and Broussonetia papyrifera for sheep and goats across seasons. The trend shown might be the result of the effectsof familiarity with the Leucaena leucocephala since animals tend to select plants that are familiar than newly introduced andunfamiliar plants. The study also revealed high level of condensed tannin (CT) in Broussonetia papyrifera which might haveinterfered with forage intake by the animals.There were no significant differences in palatability of Broussonetia papyrifera forgoat in both dry and wet season interactions and Ficus exasperata for goat in both dry and wet season interactions (P>0.05).Thestudy concluded that Broussonetia papyrifera could be a potential feed for both sheep and goats across seasons.The researchrecommended that livestock farmers should incorporate Broussonetia papyrifera feed into their programmes for both sheep andgoats and should be introduced to animals from infancy so that it may become a familiar feed for them.


2019 ◽  
Vol 222 (4) ◽  
pp. 1766-1777
Author(s):  
Daniel B. Metcalfe ◽  
Jenny C. M. Ahlstrand

2014 ◽  
Vol 22 (4) ◽  
pp. 472-479 ◽  
Author(s):  
Koen W. Thijs ◽  
Raf Aerts ◽  
Pieter Van de Moortele ◽  
Winfred Musila ◽  
Hubert Gulinck ◽  
...  

Biotropica ◽  
2016 ◽  
Vol 48 (3) ◽  
pp. 381-393 ◽  
Author(s):  
Daniel C. Thomas ◽  
Roo Vandegrift ◽  
Ashley Ludden ◽  
George C. Carroll ◽  
Bitty A. Roy

1999 ◽  
Vol 15 (5) ◽  
pp. 603-617 ◽  
Author(s):  
Roger Guevara ◽  
Rodolfo Dirzo

The emphasis of antagonistic fungus–consumer interactions to date has been on temperate taxa and predominantly zoocentric, neglecting the effects on the fungal component. These interactions are expected to be especially complex and diverse in the tropics, where both components display their greatest diversity. Variability in fungivory (apparent biomass consumed) of understorey basidiomycetes in a tropical cloud forest was investigated to test whether this could be explained (at the proximate level) by apparency-related characteristics of the aboveground structures (colour of pileus, stipe and hymenium; size and aggregation), as has been suggested for plant–herbivore relationships. Considerable interspecific variation in fungivory was detected (range 0–50%). Cluster analysis showed that neighbouring clusters had dissimilar levels of fungivory. Such clusters were similar in colour attributes of aboveground structures, but differed in aggregation size and apparent biomass. A quantitative analysis also showed that colour attributes were not strongly associated with the observed variation of consumption levels, whereas apparent biomass and aggregation size did correlate with the observed variation in fungivory. Furthermore, specific identity correlated with fungivory. It was concluded that coloration patterns may not be important for fungivory, whereas genet size and species identity (probably via characteristics unrelated to apparency, such as mycotoxins and nutritional value) seemed to be critical factors.


2004 ◽  
Vol 20 (4) ◽  
pp. 459-469 ◽  
Author(s):  
Carlos García-Robledo ◽  
Gustavo Kattan ◽  
Carolina Murcia ◽  
Paulina Quintero-Marín

This study describes a pollination system in a species of Araceae that involves three species of beetle, one of which is also a fruit predator. In a tropical cloud forest in Colombia, inflorescences of Xanthosoma daguense opened at dusk, releasing a sweet scent and raising their temperature 1–3 °C. Soon after, two species of Scarabaeidae (Dynastinae; Cyclocephala gregaria and C. amblyopsis) and one species of Nitidulidae (Macrostola costulata) arrived with pollen. Cyclocephala beetles remained inside the inflorescence for 24 h. The next night, Cyclocephala beetles left the inflorescence after picking up the freshly shed pollen, almost always moving to the nearest inflorescence available. The probability of inflorescence abortion and number of fruits set after the visit of one individual was equivalent for both Cyclocephala species. However, C. gregaria was much more abundant than C. amblyopsis, so it was the most important pollinator. There was a positive relationship between the number of dynastine visits and the number of fruits produced. Besides carrying pollen to the inflorescences, nitidulid beetles had a negative effect on female reproductive success through fruit predation. Nitidulid larvae developed inside the infructescence and preyed on up to 64% of the fruits. However, 8% of inflorescences not visited by dynastines were probably pollinated by nitidulids, because hand-pollination experiments showed that self-pollination was unlikely. Inflorescences potentially pollinated by nitidulids comprised 25% of the fruit crop in the year of our study. This interaction with a fruit predator that is also a potential pollinator resembles brood-site pollination systems in which pollinators prey on part of the fruit set (e.g. Ficus, senita cacti, Yucca), making this system substantially more complex than previously described dynastine-pollinated systems in aroids.


Sign in / Sign up

Export Citation Format

Share Document