condensed tannin
Recently Published Documents


TOTAL DOCUMENTS

544
(FIVE YEARS 144)

H-INDEX

49
(FIVE YEARS 6)

2022 ◽  
Vol 335 ◽  
pp. 00047
Author(s):  
Poespitasari Hazanah Ndaru ◽  
Siti Chuzaemi ◽  
Muhimmatu Mufidah

The purpose of this research was to determine the influence of Myristic acid and the source of condensed tannin on corn straw basedcomplete feed on nutrient content and in vitro digestibility. The method which was used in this experiment was randomized block design with four treatments and three replications. The treatment consisted of T0 complete feed (40% corn straw + 60% concentrate), T1 complete feed (40% corn straw + 60% concentrate + myristic acid 30 g/Kg DM), T2 complete feed (40% corn straw + 50% concentrate + calliandra leaf meal 10%/Kg DM and myristic acid 30 g/Kg DM), T3 complete feed (40% corn straw + 45% concentrate + calliandra leaf meal 15%/Kg DM and myristic acid 30 g/Kg DM), T4 (40% corn straw + 40% concentrate + calliandra leaf meal 20%/Kg DM and myristic acid 30 g/Kg DM). Based on the result, it could be concluded that calliandra leaf meal 15%/Kg DM + Myristic acid 30 g/Kg DM on the complete feed (T3) was the best treatment based on nutrient content and increase of dry matter digestibility, but not an effect of organic matter digestibility


2021 ◽  
Vol 10 (20) ◽  
pp. 43-47
Author(s):  
Beyza Ciftci ◽  
Onur Okumus ◽  
Sati Uzun ◽  
Mahmut Kaplan

The aim of the current experiment was to determine the effect of harvesting stage on the potential nutritive value. Vicia cracca plant was harvested at three maturity stages (before flowering, flowering and seeding). Vicia cracca plants were dried at 70 °C and grinded in a hand-mill with 1 mm sieve for chemical analysis. Crude protein, crude oil, crude ash, condensed tannin, acid detergent fiber (ADF), and neutral detergent fiber (NDF) parameters were investigated as the chemical composition. Harvesting stage had a significant (p ≤ 0.01) effect on chemical composition. Dry matter, NDF and ADF contents were increased with advancing maturity whereas crude protein, crude oil, condensed tannin and crude ash contents were decreased. As a conclusion, the nutritive value of Vicia cracca plant decreased with increasing maturity. Vicia cracca hays harvested at three maturity stages were adequate in term of mineral content for ruminant. Therefore, the Vicia cracca plant can be harvested or grazed before flowering and flowering stages due to high crude protein, crude oil and low ADF and NDF.


2021 ◽  
Author(s):  
◽  
Seeseei Molimau-Samasoni

<p>Natural products are a robust source of drug leads, and medicinal plants have been the source of natural products that are important pharmaceuticals in modern medicine. Samoan medicinal plants have been investigated in the past, but their potential as a source of new drug leads has not been realized. I hypothesized that determining the mechanism of action of Samoan medicinal plant extracts would provide insight into their pharmaceutical potential. The work described herein was carried out on 11 Samoan medicinal plants, from which 22 extracts were prepared. A bioactivity rate of 68% was determined when 15 of the 22 extracts inhibited the growth of yeast (Saccharomyces cerevisiae). The medicinal plant Psychotria insularum was the most potent, thus genome-wide analyses were completed using the haploid deletion mutant library of S. cerevisiae. Yeast strains deficient in iron transport were hypersensitive to the P. insularum aqueous extract. Further investigations showed that exogenous iron supplementation rescued the growth defect induced by P. insularum extracts, suggesting that P. insularum reduced intracellular iron. Fittingly, yeast cells treated with P. insularum extracts contained less intracellular iron than control cells. Paraxodically, the expression levels of iron transporter proteins were upregulated upon extract treatment. When we investigated iron-requiring cellular processes, we found that yeast cells treated with P. insularum extracts exhibited a respiratory deficient phenotype and reduced heme synthesis, indicative of an impaired cellular iron status. These findings suggested that P. insularum reduced bioavailable iron leading to the induction of the low iron response, and indeed the extracts of P. insularum were shown to chelate iron via the iron-chelating CAS assay. To translate results from yeast to mammalian cells, we treated primary murine macrophages with P. insularum extracts and detected an anti-inflammatory response, which we found to correlate with reduced activity of the iron-requiring aconitase enzyme. We further determined using pooled diploid mutant genetic analyses that the extracts of P. insularum did not have a genetic target. To identify the compound mediating the iron chelation mechanism, bioassay-guided isolation was conducted. Fractionation of the crude aqueous extract of P. insularum produced a relatively pure fraction that NMR and the acid-butanol assay identified as a condensed tannin. Together, these results indicate a relationship between iron chelation, a condensed tannin and inflammation. Further, we established an iron chelation mechanism of action by which P. insularum extracts are used to treat inflammation-associated symptoms in traditional Samoan medicine. Lastly, the findings presented here substantiate the reliability of plants with ethnobotanical background as sources for bioactive natural products.</p>


2021 ◽  
Author(s):  
◽  
Seeseei Molimau-Samasoni

<p>Natural products are a robust source of drug leads, and medicinal plants have been the source of natural products that are important pharmaceuticals in modern medicine. Samoan medicinal plants have been investigated in the past, but their potential as a source of new drug leads has not been realized. I hypothesized that determining the mechanism of action of Samoan medicinal plant extracts would provide insight into their pharmaceutical potential. The work described herein was carried out on 11 Samoan medicinal plants, from which 22 extracts were prepared. A bioactivity rate of 68% was determined when 15 of the 22 extracts inhibited the growth of yeast (Saccharomyces cerevisiae). The medicinal plant Psychotria insularum was the most potent, thus genome-wide analyses were completed using the haploid deletion mutant library of S. cerevisiae. Yeast strains deficient in iron transport were hypersensitive to the P. insularum aqueous extract. Further investigations showed that exogenous iron supplementation rescued the growth defect induced by P. insularum extracts, suggesting that P. insularum reduced intracellular iron. Fittingly, yeast cells treated with P. insularum extracts contained less intracellular iron than control cells. Paraxodically, the expression levels of iron transporter proteins were upregulated upon extract treatment. When we investigated iron-requiring cellular processes, we found that yeast cells treated with P. insularum extracts exhibited a respiratory deficient phenotype and reduced heme synthesis, indicative of an impaired cellular iron status. These findings suggested that P. insularum reduced bioavailable iron leading to the induction of the low iron response, and indeed the extracts of P. insularum were shown to chelate iron via the iron-chelating CAS assay. To translate results from yeast to mammalian cells, we treated primary murine macrophages with P. insularum extracts and detected an anti-inflammatory response, which we found to correlate with reduced activity of the iron-requiring aconitase enzyme. We further determined using pooled diploid mutant genetic analyses that the extracts of P. insularum did not have a genetic target. To identify the compound mediating the iron chelation mechanism, bioassay-guided isolation was conducted. Fractionation of the crude aqueous extract of P. insularum produced a relatively pure fraction that NMR and the acid-butanol assay identified as a condensed tannin. Together, these results indicate a relationship between iron chelation, a condensed tannin and inflammation. Further, we established an iron chelation mechanism of action by which P. insularum extracts are used to treat inflammation-associated symptoms in traditional Samoan medicine. Lastly, the findings presented here substantiate the reliability of plants with ethnobotanical background as sources for bioactive natural products.</p>


2021 ◽  
Vol 5 ◽  
Author(s):  
Haile Tesfaye Duguma ◽  
Sirawdink Fikreyesus Forsido ◽  
Tefera Belachew ◽  
Oliver Hensel

Background: Development of complementary foods by mixing plant-based (cereals, pulses, oilseeds, and others) ingredients and employing various processing techniques is widely reported. However, information on comparison of anti-nutritional factors and functional properties of extruded and unextruded complementary flours made from a multi-mix is limited. In this regard, this study aims to investigate the influence of extrusion cooking on anti-nutritional and functional properties of newly developed extruded oats, soybean, linseed, and premix composite complementary flours.Methods: Thirteen different blending ratios of oats, soybean, linseed, and premix were generated using a constrained D-optimal design of the experiment. Each of the 13 blends was divided into two groups: extrusion cooked and unextruded composite flour sample. Anti-nutritional and functional properties were determined using standard methods for both composite flours. ANOVA was used to determine if there was a significant difference for extruded and unextruded composite flours and paired t-tests were used to check variation between extruded and unextruded.Results: The phytate content of the extruded and unextruded composite flours was 158.93–191.33 mg/100 g and 175.06–203.10 mg/100 g, respectively, whereas the tannin content of the extruded and unextruded composite flours was 8.4–22.89 mg/100 g and 23.67–36.97 mg/100 g, respectively. There was a statistically significant (p &lt; 0.05) difference among the extruded composite flours in terms of phytate and condensed tannin content. Paired t-test has indicated a significant (p &lt; 0.05) difference between extruded and unextruded composite flours for phytate and tannin. Water absorption capacity and bulk density have shown a significant (p &lt; 0.05) difference among extruded and unextruded composite flours. An increase in the proportion of soybean and linseed flour was associated with an increase in phytate, tannin, and water absorption capacity of composite flours. However, bulk density was increased with an increasing proportion of oat in the blend.Conclusion: The findings revealed that extrusion cooking significantly reduced phytate and condensed tannin content and improved the functional properties of the composite complementary food flour. Further investigation is needed on other anti-nutritional factors that are not included in this report.


2021 ◽  
Vol 9 (10) ◽  
pp. 777-785
Author(s):  
Mahdi Haroun ◽  

The polyphenolic compoundsextract rich in gallo-catechol tannins submitted to complementary analytical techniqueswas evaluated. The whole plantspecies screened were of the condensed type except Acacia seyal var. fistuala, Acaciaseyal var. seyal, Casuarina equistifolia, and Pithecellobium dulcewere of mixedhydrolysable-condensed(gallo-catechol) type. The quantitative data indicated that 5 parts (bark) out of 12 species, when extracted, contained more than 10% tannins (oven-dry basis), the level of commercial interest. The catechin numbers indicated that all the studied species contained condensed tannin in varying amounts (0.6-45.7), while the presence of both gallic acid and catechin means that the tannin is of mixed type. Thin-layer and paper chromatography with different solvent systems confirmed the presence of catechin and gallic acid, and showed that tannic acid, fisetin, epicatechin and some unidentified phenolics were present. However, dihydrofisetin and robinetin, which were used as standards, were not detected. Astringency values shows that the Acacia mellifera(0.18), Acacia seyalvar.fistuala(0.18), Pithecellobium dulce (0.15), Acacia senegal (0.14), Acacia farnesiana (0.13), Calotropis procera (0.13)barks could be used in place of A. mearnsii(international commercial tannin materials) (0.16) because the degree of relative astringency or the ability of their tannin to combine with protein is close to that of A. mearnsii in other words these six species can give leather with characteristics comparable with that of A. mearnsii.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2165
Author(s):  
Kaïss Aouadi ◽  
Hafedh Hajlaoui ◽  
Soumaya Arraouadi ◽  
Siwar Ghannay ◽  
Mejdi Snoussi ◽  
...  

Plant-based antioxidants such as polyphenols have gained significance in primary health care needs, due to their potential and therapeutic use in modern medicine. Thus, the present study aimed to evaluate, for the first time, the effect of solvents on extraction yield, polyphenolics, phytoconstituents and antioxidant properties of various extracts (aqueous, methanol, ethyl acetate, dichloromethane, hexane) of Echium humile Desf. (E. humile Desf.) through in vitro and in silico studies. Statistically, among the various solvents, both methanol (443.05 ± 0.50 mg GAE/g extract) and aqueous (440.59 ± 0.50 mg GAE/g extract) extracts displayed equipotent and highest total phenolics content (TPC), while dichloromethane extract had the maximum total flavonoid content (TFC) (151.69 ± 0.60 mg QE/g extract), total flavonol content (TFlC) (97.39 ± 0.19 mg QE/g extract) and total carotenoids content (TCC) (537.85 ± 5.06 mg β-CE/g). Meanwhile, the highest total condensed tannin content (TCTC) was recorded together with hexane (131.50 ± 0.1 mg GAE/g extract) and dichloromethane (125.74 ± 5.72 GAE/g extract) extracts. The results of antioxidant studies revealed that ethyl acetate extract exhibited a potent scavenging effect through 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) (IC50 = 17.25 ± 1.76 µg/mL) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) (1433.30 ± 1.78 µg/mL), while dichloromethane extract displayed significant (p < 0.05) ferric ion reducing antioxidant power (FRAP) activity (375.00 ± 0.02 µg/mL) and total antioxidant capacity (TAC) (1999.00 ± 2.05 µg AAE/g). In addition, the quantification of the polyphenolics content of the most active E. humile Desf. extract, ethyl acetate has been assessed by HPLC/MS, leading to the identification of p-coumaric, trans-ferulic acids and cirsiliol as major constituents. Additionally, molecular docking analysis showed that among the selected phytocompounds, naringin (−7.0 kcal/mol) followed by 1,3-di-O-caffeoyquinic acid (−6.6 kcal/mol), rosmarinic acid (−6.6 kcal/mol), rutin (−6.5 kcal/mol) and apigenin-7-O-glucoside (−6.5 kcal/mol) showed the lowest binding potential. Furthermore, ADME and toxicity parameters justify that identified compounds from ethyl acetate extract are safer to replace the synthetic drugs with side effects. The obtained results can provide valuable information on the medical and therapeutic potential use of E. humile Desf. as a potent antioxidant agent to improve immunity.


Author(s):  
Vaishnav Radhna Gupta

Lepidium sativum L. commonly known as garden cress, is a member of the Brassicaceae family. Garden cress is multipurpose plant that has been reported in various ayurvedic texts for its therapeutic and functional properties. Garden cress is one of traditional medicinal plant loaded with nutrients. In the present study, garden cress seeds were quantitatively analyzed as whole, roasted, popped and germinated forms, for selected functional properties viz. total phenols, condensed tannin content and Insoluble dietary fibre profile. The results revealed that different processing treatments improved the nutraceutical properties of garden cress seeds by increasing their total polyphenols and condensed tannins content and also its antioxidant activities. Germinated cress seeds had the highest significant per cent rise of 24.42 mg/100g total phenols in comparison to raw seeds. There was more than 50 per cent rise (52.17%) in condensed tannins content during 48 hrs. of germination giving value of 0.35 mg/100g. Roasted seeds contained maximum cellulose (19.26%) content followed by germinated (14.10%), raw (9.26%) and popped seeds (5.92%).


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 157-157
Author(s):  
Madeline E Rivera ◽  
Luiz Fernando Dias Batista ◽  
Aaron B Norris ◽  
Genevieve M D’Souza ◽  
Luis O Tedeschi

Abstract Plant secondary metabolites (PSM) and yeast supplemented in growing cattle have been reported as improving dry matter digestibility (DMD) and reducing enteric methane emissions. This study aimed to evaluate the effect of combined supplementation with condensed tannin (CT; Schinopsis balansae) extract and active dry yeast (ADY; Saccharomyces cerevisiae) on fermentation dynamics, utilizing in vitro gas production (IVGP) technique. A 2 × 2 Latin square design was used to study fermentation patterns of four dietary treatments (CON- no CT and no ADY, ADY alone, CT alone or combined CT + ADY). Animals received daily CT at 1% DM and 10 g of ADY, respectively. On d 0, 7, 14, 21, 28, and 35 rumen inoculum was collected from 23 fistulated steers (284.3 ± 4.1 kg) four hours post-feeding. Samples were incubated under anaerobic conditions at 39oC for 48 h with 200 mg of a grower diet (14.8% CP, 40.6% NDF, 88.5% DM). Gas parameters were analyzed using a mixed linear statistical model. There was a day effect for total gas production (TGP; P &lt; 0.001), non-fiber carbohydrate degradation (P = 0.031) and fractional degradation assuming an asymptote model (P = 0.015). Both asymptote and non-fiber fractional degradation rate estimates had an interaction between Day × TRT (P = 0.001 and 0.0104, respectively). Data were analyzed using polynomial contrasts showed a difference in non-fiber fractional rate of fermentation for CON × CT and CT × ADY (P = 0.052 and 0.054, respectively). This was also true if an asymptote model was assumed (P = 0.0 34 and 0.034, respectively). We concluded that combined supplementation of CT and ADY exhibited similar IVGP trends over time, this may be because animals only received a grower diet at 1.5% shrunk BW. Future studies should investigate the impact of combined supplementation on varying levels of concentrate diets.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258265
Author(s):  
Bernardo Valenti ◽  
Luca Campidonico ◽  
Antonio Natalello ◽  
Massimiliano Lanza ◽  
Saheed A. Salami ◽  
...  

Five groups of lambs (n = 9 each) were used to test the effect of plant extracts rich in hydrolysable (HT) or condensed tannin (CT) on animal performance, fatty acid composition of rumen content, liver and meat. The control group (CO) received a concentrate-based diet without tannins supplementation. The other groups received the same diet as the control lambs plus 4% chestnut (CH) and tara (TA) extracts as a source of HT and mimosa (MI) and gambier (GA) extracts as a source of CT. One-way ANOVA was used to assess the overall effect of dietary treatments, tannins supplementation (CO vs. CH+TA+MI+GA) and the effect of tannin type (HT vs. CT: CH+TA vs. MI+GA) on animal performance, rumen content, liver and intramuscular FA. Dietary CH negatively affected animal performance. The rumen content of the different groups showed similar levels of 18:3 c9c12c15, 18:2 c9c12, 18:2 c9t11, 18:1 t11 and 18:0, whereas 18:1 t10 was greater in CO. Also, 18:1 t10 tended to be lower in the rumen of HT than CT-fed lambs. These data were partially confirmed in liver and meat, where CO showed a greater percentage of individual trans 18:1 fatty acids in comparison with tannins-fed groups. Our findings challenge some accepted generalizations on the use of tannins in ruminant diets as they were ineffective to favour the accumulation of dietary PUFA or healthy fatty acids of biohydrogenation origin in the rumen content and lamb meat, but suggest a generalized influence on BH rather than on specific steps.


Sign in / Sign up

Export Citation Format

Share Document