In vitro angiogenesis by human umbilical vein endothelial cells (HUVEC) induced by three-dimensional co-culture with glioblastoma cells

2008 ◽  
Vol 92 (2) ◽  
pp. 121-128 ◽  
Author(s):  
Zhijian Chen ◽  
Andre Htay ◽  
Wagner Dos Santos ◽  
George T. Gillies ◽  
Helen L. Fillmore ◽  
...  
2017 ◽  
Vol 33 (9) ◽  
pp. 592-599 ◽  
Author(s):  
Francesca Felice ◽  
Ester Belardinelli ◽  
Alessandro Frullini ◽  
Tatiana Santoni ◽  
Egidio Imbalzano ◽  
...  

Objectives Aminaphtone, a naphtohydrochinone used in the treatment of capillary disorders, may affect oedema in chronic venous insufficiency. Aim of study is to investigate the effect of aminaphtone on vascular endothelial permeability in vitro and its effects on three-dimensional capillary-like structures formed by human umbilical vein endothelial cells. Method Human umbilical vein endothelial cells were treated with 50 ng/ml VEGF for 2 h and aminaphtone for 6 h. Permeability assay, VE-cadherin expression and Matrigel assay were performed. Results VEGF-induced permeability was significantly decreased by aminaphtone in a range concentration of 1–20 µg/ml. Aminaphtone restored VE-cadherin expression. Finally, 6 h pre-treatment with aminaphtone significantly preserved capillary-like structures formed by human umbilical vein endothelial cells on Matrigel up to 48 h compared to untreated cells. Conclusions Aminaphtone significantly protects endothelium permeability and stabilises endothelial cells organised in capillary-like structures, modulating VE-cadherin expression. These data might explain the clinical benefit of aminaphtone on chronic venous insufficiency.


2002 ◽  
Vol 11 (4) ◽  
pp. 369-377 ◽  
Author(s):  
Makarand V. Risbud ◽  
Erdal Karamuk ◽  
René Moser ◽  
Joerg Mayer

Three-dimensional (3-D) scaffolds offer an exciting possibility to develop cocultures of various cell types. Here we report chitosan–collagen hydrogel-coated fabric scaffolds with defined mesh size and fiber diameter for 3-D culture of human umbilical vein endothelial cells (HUVECs). These scaffolds did not require pre-coating with fibronectin and they supported proper HUVEC attachment and growth. Scaffolds preserved endothelial cell-specific cobblestone morphology and cells were growing in compartments defined by the textile mesh. HUVECs on the scaffold maintained the property of contact inhibition and did not exhibit overgrowth until the end of in vitro culture (day 6). MTT assay showed that cells had preserved mitochondrial functionality. It was also noted that cell number on the chitosan-coated scaffold was lower than that of collagen-coated scaffolds. Calcein AM and ethidium homodimer (EtD-1) dual staining demonstrated presence of viable and metabolically active cells, indicating growth supportive properties of the scaffolds. Actin labeling revealed absence of actin stress fibers and uniform distribution of F-actin in the cells, indicating their proper attachment to the scaffold matrix. Confocal microscopic studies showed that HUVECs growing on the scaffold had preserved functionality as seen by expression of von Willebrand (vW) factor. Observations also revealed that functional HUVECs were growing at various depths in the hydrogel matrix, thus demonstrating the potential of these scaffolds to support 3-D growth of cells. We foresee the application of this scaffold system in the design of liver bioreactors wherein hepatocytes could be cocultured in parallel with endothelial cells to enhance and preserve liver-specific functions.


2010 ◽  
Vol 400 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Zhong-Xiu-Zi Gao ◽  
Da-Yong Huang ◽  
Hai-Xia Li ◽  
Li-Na Zhang ◽  
Yan-Hong Lv ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Liling Ren ◽  
Dongyang Ma ◽  
Bin Liu ◽  
Jinda Li ◽  
Jia Chen ◽  
...  

Engineering three-dimensional (3D) vascularized constructs remains a challenge due to the inability to form rich microvessel networks. In this study we engineered a prevascularized 3D cell sheet construct for tissue regeneration using human bone marrow-derived mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells as cell sources. hMSCs were cultured to form a thick cell sheet, and human umbilical vein endothelial cells (HUVECs) were then seeded on the hMSCs sheet to form networks. The single prevascularized HUVEC/hMSC cell sheet was folded to form a 3D construct by a modified cell sheet engineering technique.In vitroresults indicated that the hMSCs cell sheet promoted the HUVECs cell migration to form networks in horizontal and vertical directions.In vivoresults showed that many blood vessels grew into the 3D HUVEC/hMSC cell sheet constructs after implanted in the subcutaneous pocket of immunodeficient mice. The density of blood vessels in the prevascularized constructs was higher than that in the nonprevascularized constructs. Immunohistochemistry staining further showed thatin vitropreformed human capillaries in the prevascularized constructs anastomosed with the host vasculature to form functional blood vessels. These results suggest the promising potential of this 3D prevascularized construct using hMSCs cell sheet as a platform for wide applications in engineering vascularized tissues.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Rong Yuan ◽  
Weili Shi ◽  
Qiqi Xin ◽  
Binrui Yang ◽  
Maggie Puiman Hoi ◽  
...  

Atherosclerotic plaque angiogenesis is key factor in plaque instability and vulnerability, and low concentrations of oxidized low density lipoprotein (ox-LDL) promote the in vitro angiogenesis of endothelial cells and play an important role in plaque angiogenesis. Ligusticum chuanxiong Hort. and Radix Paeoniae Rubra herb pair in Chinese medicine obtains the optimum therapeutic efficacy in atherosclerosis, and their major active ingredients tetramethylpyrazine (TMP) and paeoniflorin (PF) are reported to alleviate atherosclerosis. The aim of this study was to investigate the effects of TMP and PF on ox-LDL-induced angiogenesis and the underlying mechanism. Human umbilical vein endothelial cells (HUVECs) were incubated with ox-LDL and were then treated with TMP, PF, or a combination of TMP and PF. Cell proliferation, migration, tube formation, and the expression of angiogenesis-related proteins were measured. Synergism was evaluated using the combination index in cell proliferation. We found that TMP and PF attenuated the in vitro angiogenesis in ox-LDL-induced HUVECs. In addition, the combination of TMP and PF not only inhibited the ox-LDL-induced expression of CD31, vascular endothelial growth factor (VEGF), and VEGF receptor 2 (VEGFR2) but also decreased the ox-LDL-induced expression of Notch1, Jagged1, and Hes1. In summary, the combination of TMP and PF suppresses ox-LDL-induced angiogenesis in HUVECs by inhibiting both the VEGF/VEGFR2 and the Jagged1/Notch1 signaling pathways, which might contribute to the stability of plaques in atherosclerosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zaipul I. Md Dom ◽  
Caterina Pipino ◽  
Bozena Krolewski ◽  
Kristina O’Neil ◽  
Eiichiro Satake ◽  
...  

AbstractWe recently identified a kidney risk inflammatory signature (KRIS), comprising 6 TNF receptors (including TNFR1 and TNFR2) and 11 inflammatory proteins. Elevated levels of these proteins in circulation were strongly associated with risk of the development of end-stage kidney disease (ESKD) during 10-year follow-up. It has been hypothesized that elevated levels of these proteins in circulation might reflect (be markers of) systemic exposure to TNFα. In this in vitro study, we examined intracellular and extracellular levels of these proteins in human umbilical vein endothelial cells (HUVECs) exposed to TNFα in the presence of hyperglycemia. KRIS proteins as well as 1300 other proteins were measured using the SOMAscan proteomics platform. Four KRIS proteins (including TNFR1) were down-regulated and only 1 protein (IL18R1) was up-regulated in the extracellular fraction of TNFα-stimulated HUVECs. In the intracellular fraction, one KRIS protein was down-regulated (CCL14) and 1 protein was up-regulated (IL18R1). The levels of other KRIS proteins were not affected by exposure to TNFα. HUVECs exposed to a hyperglycemic and inflammatory environment also showed significant up-regulation of a distinct set of 53 proteins (mainly in extracellular fraction). In our previous study, circulating levels of these proteins were not associated with progression to ESKD in diabetes.


Sign in / Sign up

Export Citation Format

Share Document