scholarly journals Switched Exponential State Estimation and Robust Stability for Interval Neural Networks with Discrete and Distributed Time Delays

2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Hongwen Xu ◽  
Huaiqin Wu ◽  
Ning Li

The interval exponential state estimation and robust exponential stability for the switched interval neural networks with discrete and distributed time delays are considered. Firstly, by combining the theories of the switched systems and the interval neural networks, the mathematical model of the switched interval neural networks with discrete and distributed time delays and the interval estimation error system are established. Secondly, by applying the augmented Lyapunov-Krasovskii functional approach and available output measurements, the dynamics of estimation error system is proved to be globally exponentially stable for all admissible time delays. Both the existence conditions and the explicit characterization of desired estimator are derived in terms of linear matrix inequalities (LMIs). Moreover, a delay-dependent criterion is also developed, which guarantees the robust exponential stability of the switched interval neural networks with discrete and distributed time delays. Finally, two numerical examples are provided to illustrate the validity of the theoretical results.


2011 ◽  
Vol 58-60 ◽  
pp. 2597-2601
Author(s):  
Shou Yi Qian ◽  
Li Xie

The problem of robust exponential stability analysis for nonlinear uncertain interval neural networks with time delay is investigated. The nonlinear uncertainties are assumed to satisfy the cone constraint conditions. The interval parameters of the neural networks are equivalent to norm matched parameter uncertainties via some matrix transformations. The stable criteria for the uncertain interval neural networks with time delays are developed by use of the Lyapunov stability theory. All the stability conditions in this paper are presented in terms of linear matrix inequalities.



2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Lijie Geng ◽  
Haiying Li ◽  
Bingchen Zhao ◽  
Guang Su

This paper is concerned with the exponential state estimation problem for a class of discrete-time fuzzy cellular neural networks with mixed time delays. The main purpose is to estimate the neuron states through available output measurements such that the dynamics of the estimation error is globally exponentially stable. By constructing a novel Lyapunov-Krasovskii functional which contains a triple summation term, some sufficient conditions are derived to guarantee the existence of the state estimator. The linear matrix inequality approach is employed for the first time to deal with the fuzzy cellular neural networks in the discrete-time case. Compared with the present conditions in the form ofM-matrix, the results obtained in this paper are less conservative and can be checked readily by the MATLAB toolbox. Finally, some numerical examples are given to demonstrate the effectiveness of the proposed results.



2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Yanke Du ◽  
Rui Xu

A class of interval neural networks with time-varying delays and distributed delays is investigated. By employingH-matrix andM-matrix theory, homeomorphism techniques, Lyapunov functional method, and linear matrix inequality approach, sufficient conditions for the existence, uniqueness, and global robust exponential stability of the equilibrium point to the neural networks are established and some previously published results are improved and generalized. Finally, some numerical examples are given to illustrate the effectiveness of the theoretical results.



2011 ◽  
Vol 20 (04) ◽  
pp. 657-666
Author(s):  
CHOON KI AHN

In this paper, the delay-dependent state estimation problem for switched Hopfield neural networks with time-delay is investigated. Based on the Lyapunov–Krasovskii stability theory, a new delay-dependent state estimator for switched Hopfield neural networks is established to estimate the neuron states through available output measurements such that the estimation error system is asymptotically stable. The gain matrix of the proposed estimator is characterized in terms of the solution to a linear matrix inequality (LMI), which can be checked readily by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed state estimator.



2007 ◽  
Vol 17 (03) ◽  
pp. 207-218 ◽  
Author(s):  
BAOYONG ZHANG ◽  
SHENGYUAN XU ◽  
YONGMIN LI

This paper considers the problem of robust exponential stability for a class of recurrent neural networks with time-varying delays and parameter uncertainties. The time delays are not necessarily differentiable and the uncertainties are assumed to be time-varying but norm-bounded. Sufficient conditions, which guarantee that the concerned uncertain delayed neural network is robustly, globally, exponentially stable for all admissible parameter uncertainties, are obtained under a weak assumption on the neuron activation functions. These conditions are dependent on the size of the time delay and expressed in terms of linear matrix inequalities. Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed stability results.





Filomat ◽  
2016 ◽  
Vol 30 (13) ◽  
pp. 3435-3449
Author(s):  
Bo Du

In this paper, the state estimation problem is dealt with for a class of neutral-type neural networks with mixed time delays. We aim at designing a state estimator to estimate the neuron states, through available output measurements, such that the dynamics of the estimation error is globally exponentially stable in the presence of mixed time delays. By using the Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions to guarantee the existence of the state estimators. A simulation example is exploited to show the usefulness of the derived LMI-based stability conditions.



Sign in / Sign up

Export Citation Format

Share Document