Selection of ground motion attenuation model for Peninsular Malaysia due to far-field Sumatra earthquakes

2015 ◽  
Vol 80 (3) ◽  
pp. 1865-1889 ◽  
Author(s):  
Tze Che Van ◽  
Tze Liang Lau ◽  
Chai Fung Mok
2007 ◽  
Vol 23 (3) ◽  
pp. 585-613 ◽  
Author(s):  
Vladimir Graizer ◽  
Erol Kalkan

Spatial distribution of ground motion data of recent earthquakes unveiled some features of peak ground acceleration (PGA) attenuation with respect to closest distance to the fault ( R) that current predictive models may not effectively capture. As such, PGA: (1) remains constant in the near-fault area, (2) may show an increase in amplitudes at a certain distance of about 3–10 km from the fault rupture, (3) attenuates with slope of R−1 and faster at farther distances, and (4) intensifies at certain distances due to basin effect (if basin is present). A new ground motion attenuation model is developed using a comprehensive set of ground motion data compiled from shallow crustal earthquakes. A novel feature of the predictive model is its new functional form structured on the transfer function of a single-degree-of-freedom oscillator whereby frequency square term is replaced with closest distance to the fault. We are proposing to fit ground motion amplitudes to a shape of a response function of a series (cascade) of filters, stacked separately one after another, instead of fitting an attenuation curve to a prescribed empirical expression. In this mathematical model each filter represents a separate physical effect.


2018 ◽  
Vol 8 (8) ◽  
pp. 1243 ◽  
Author(s):  
Iman Mohseni ◽  
Hamidreza Lashkariani ◽  
Junsuk Kang ◽  
Thomas Kang

This study assessed the structural performance of reinforced concrete (RC) arch bridges under strong ground motion. A detailed three-dimensional finite element model of a 400 m RC arch bridge with composite superstructure and double RC piers was developed and its behavior when subjected to strong earthquakes examined. Two sets of ground motion records were applied to simulate pulse-type near- and far-field motions. The inelastic behavior of the concrete elements was then evaluated via a seismic time history analysis. The concept of Demand to Capacity Ratios (DCR) was utilized to produce an initial estimate of the dynamic performance of the structure, emphasizing the importance of capacity distribution of force and bending moment within the RC arch and the springings and piers of the bridge. The results showed that the earthquake loads, broadly categorized as near- and far-field earthquake loads, changed a number of the bridge’s characteristics and hence its structural performance.


1999 ◽  
Vol 89 (4) ◽  
pp. 854-866 ◽  
Author(s):  
John E. Ebel ◽  
Alan L. Kafka

Abstract We have developed a Monte Carlo methodology for the estimation of seismic hazard at a site or across an area. This method uses a multitudinous resampling of an earthquake catalog, perhaps supplemented by parametric models, to construct synthetic earthquake catalogs and then to find earthquake ground motions from which the hazard values are found. Large earthquakes extrapolated from a Gutenberg-Richter recurrence relation and characteristic earthquakes can be included in the analysis. For the ground motion attenuation with distance, the method can use either a set of observed ground motion observations from which estimates are randomly selected, a table of ground motion values as a function of epicentral distance and magnitude, or a parametric ground motion attenuation relation. The method has been tested for sites in New England using an earthquake catalog for the northeastern United States and southeastern Canada, and it yields reasonable ground motions at standard seismic hazard values. This is true both when published ground motion attenuation relations and when a dataset of observed peak acceleration observations are used to compute the ground motion attenuation with distance. The hazard values depend to some extent on the duration of the synthetic catalog and the specific ground motion attenuation used, and the uncertainty in the ground motions increases with decreasing hazard probability. The program gives peak accelerations that are comparable to those of the 1996 U.S. national seismic hazard maps. The method can be adapted to compute seismic hazard for cases where there are temporal or spatial variations in earthquake occurrence rates or source parameters.


Author(s):  
Erkan Akpinar ◽  
Seckin Ersin

Strengthening of non-ductile public buildings is a never-ending issue. Selection of the suitable strengthening method and appropriate analysis type for the assessment of pre- and the post-intervention performances are still open to question. The displacement or drift limitations are crucial as well as demand capacity ratios for determination of such buildings performance under severe ground motion. In this chapter, an investigation of seismic performance focused on displacement criterion of strengthened non-ductile public RC buildings in Turkey is presented. Both the nonlinear static and response history analysis were conducted. Friction dampers which are fairly modern technique and conventional RC wall implementation method were introduced to as-is building. For the simplicity and the easy of the process, 2D frame selected for investigation. Comparison of the aforementioned techniques for non-ductile public RC buildings and performances particularly by means of displacement obtained using different methods for those investigated schemes are carried out and presented in the chapter.


Sign in / Sign up

Export Citation Format

Share Document